OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1937–1944

Electro-magnetostatic homogenization of bianisotropic metamaterials

Chris Fietz  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1937-1944 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long-wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long-wavelength homogenization of a one-dimensional metamaterial with microscopically bi-isotropic inclusions is derived.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 20, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 17, 2013
Published: June 25, 2013

Chris Fietz, "Electro-magnetostatic homogenization of bianisotropic metamaterials," J. Opt. Soc. Am. B 30, 1937-1944 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  2. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009). [CrossRef]
  3. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009). [CrossRef]
  4. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006). [CrossRef]
  5. M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75, 115104 (2007). [CrossRef]
  6. J. Li and J. B. Pendry, “Non-local effective medium of metamaterial,” arXiv.org, arXiv:cond-mat/0701332v1 (2007).
  7. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials 1, 62–80 (2007).
  8. C. Fietz and G. Shvets, “Homogenization theory for simple metamaterials modeled as one-dimensional arrays of thin polarizable sheets,” Phys. Rev. B 82, 205128 (2010). [CrossRef]
  9. A. Alú, “First principles homogenization theory for periodic metamaterials,” Phys. Rev. B 84, 075153 (2011). [CrossRef]
  10. A. Pors, I. Tsukerman, and S. I. Bozhevolnyi, “Effective constitutive parameters of plasmonic metamaterials: homogenization by dual field interpolation,” Phys. Rev. E 84, 016609 (2011). [CrossRef]
  11. H. Brezis and J. L. Lions, eds., Nonlinear Partial Differential Equations and Their Applications, Vol. 12 of College de France Seminar (Longman Scientific & Technical, 1994), lecture by G. Allaire.
  12. U. Hornung, ed., Homogenization and Porous Media (Springer, 1996), Section 1.3.
  13. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Aymptotic Analysis for Periodic Structures (North-Holland, 1978), Chap. 1, Section 2.
  14. H. T. Banks, V. A. Bokil, D. Cioranescu, N. L. Gibson, G. Griso, and B. Miara, “Homogenization of periodically varying coefficients in electromagnetic materials,” J. Sci. Comput. 28, 191–221 (2006). [CrossRef]
  15. O. Ouchetto, C. W. Qui, S. Zouhdi, L. W. Li, and A. Razek, “Homogenization of 3-d periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theor. Tech. 54, 3893–3898 (2006). [CrossRef]
  16. L. Cao, Y. Zhang, W. Allegretto, and T. Lin, “Multiscale asymptotic method for maxwell’s equations in composite materials,” SIAM J. Numer. Anal. 47, 4257–4289 (2010). [CrossRef]
  17. C. Brosseau and A. Beroual, “Effective permittivity of composites with stratified particles,” J. Phys. D 34, 704–710 (2001). [CrossRef]
  18. Y. A. Urzhumov and G. Shvets, “Quasistatic effective medium theory of plasmonic nanostructures,” Proc. SPIE 6642, 66420X (2007). [CrossRef]
  19. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  20. K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited