OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1954–1965

Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization

Alexandros Pitilakis and Emmanouil E. Kriezis  »View Author Affiliations


JOSA B, Vol. 30, Issue 7, pp. 1954-1965 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001954


View Full Text Article

Enhanced HTML    Acrobat PDF (774 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We rigorously analyze nonlinear propagation in hybrid silicon-plasmonic (HSP) waveguides. Focusing on the relative importance of Kerr and free carrier effects (FCE) originating from two-photon absorption, we establish a set of figures of merit applicable to any silicon-comprising waveguide. An optimized HSP design is proposed, deeply confining the optical field in a nanosized nonlinear polymer gap formed between a metal wedge and an underlying silicon wire. An exceptionally high nonlinear parameter γ>104m1W1 is attained, combined with an FCE power threshold larger than 1 W, even in CW. The formulation is also extended to multimode waveguides, supported by two all-optical applications of an HSP nonlinear directional coupler.

© 2013 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

History
Original Manuscript: March 14, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 24, 2013
Published: June 26, 2013

Citation
Alexandros Pitilakis and Emmanouil E. Kriezis, "Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization," J. Opt. Soc. Am. B 30, 1954-1965 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  4. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef]
  5. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
  6. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010). [CrossRef]
  7. M. Wu, Z. Han, and V. Vien, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010). [CrossRef]
  8. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007). [CrossRef]
  9. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement, and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  11. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009). [CrossRef]
  12. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580–1583 (1982). [CrossRef]
  13. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: Polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010). [CrossRef]
  14. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007). [CrossRef]
  15. S. Afshar Vahid and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  17. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express 19, 206–217 (2011). [CrossRef]
  18. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005). [CrossRef]
  19. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19, 12925–12936 (2011). [CrossRef]
  20. Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011). [CrossRef]
  21. M. M. Hossain, M. D. Turner, and M. Gu, “Ultrahigh nonlinear nanoshell plasmonic waveguide with total energy confinement,” Opt. Express 19, 23800–23808 (2011). [CrossRef]
  22. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008). [CrossRef]
  23. B. L. Lawrence, M. Cha, J. U. Kang, W. Toruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, “Large purely refractive nonlinear index of single crystal p-toluene sulphonate (pts) at 1600 nm,” Electron. Lett. 30, 447–448 (1994). [CrossRef]
  24. F. Qin, Z. Meng, X. Zhong, Y. Liu, and Z. Li, “Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nanoimprint lithography technique,” Opt. Express 20, 13091–13099 (2012). [CrossRef]
  25. A. Zakery and S. R. Elliott, “Optical properties, and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003). [CrossRef]
  26. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett. 35, 1551–1553 (2010). [CrossRef]
  27. O. Tsilipakos, A. Pitilakis, A. C. Tasolamprou, T. V. Yioultsis, and E. E. Kriezis, “Computational techniques for the analysis, and design of dielectric-loaded plasmonic circuitry,” Opt. Quantum Electron. 42, 541–555 (2011). [CrossRef]
  28. A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Nonlinear effects in hybrid plasmonic waveguides,” in ICTON-2012: 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper 6254436.
  29. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008). [CrossRef]
  30. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006). [CrossRef]
  31. C. Milian and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited