OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1975–1980

Doubly resonant Ag–LiNbO3 embedded coaxial nanostructure for high second-order nonlinear conversion

Elsie Barakat, Maria-Pilar Bernal, and Fadi Issam Baida  »View Author Affiliations


JOSA B, Vol. 30, Issue 7, pp. 1975-1980 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001975


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coaxial nanopatterned lithium niobate embedded in Ag enables a large electromagnetic confinement in small-volume cavities. The nonlinear material filling these cavities is at the origin of high second-order nonlinear conversion, where no phase matching is needed. A doubly resonant optical spectrum of the linear response is required in order to boost this phenomenon, providing a promising and stable second-harmonic (SH) device tailored for any desired wavelength. The structure is fabricated by using electron-beam lithography, dry etching, and chemical mechanical polishing. We report a second-harmonic generation (SHG) enhancement factor of 26 compared to unpatterned x-cut lithium niobate wafer at λpump=1550nm. The enhancement, which comes exclusively from the nanostructured lithium niobate, is experimentally and theoretically demonstrated. A comparison with three types of metallic subwavelength apertures is shown. The embedded structure shows the strongest SH signal. Analysis of the strong dependence of the incident polarization on the SHG intensity with a homemade 3D–NL–FDTD algorithm shows good agreement with experimental data.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(130.4310) Integrated optics : Nonlinear
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 25, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 14, 2013
Published: June 26, 2013

Citation
Elsie Barakat, Maria-Pilar Bernal, and Fadi Issam Baida, "Doubly resonant Ag–LiNbO3 embedded coaxial nanostructure for high second-order nonlinear conversion," J. Opt. Soc. Am. B 30, 1975-1980 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1975


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer, 2002).
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef]
  4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef]
  5. S. K. David, W. L. James, and E. R. Cora, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  6. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007). [CrossRef]
  7. E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, E. Ponizovskaya, A. Bratkovsky, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Coherent and incoherent second harmonic generation in planar G-shaped nanostructures,” Opt. Lett. 36, 3681–3683 (2011). [CrossRef]
  8. R. Zhou, H. Lu, X. Liu, Y. Gong, and D. Mao, “Second-harmonic generation from a periodic array of non-centro symmetric nanoholes,” J. Opt. Soc. Am. B 27, 2405–2409 (2010). [CrossRef]
  9. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006). [CrossRef]
  10. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009). [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  12. T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998). [CrossRef]
  13. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef]
  14. F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004). [CrossRef]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  16. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155314 (2003). [CrossRef]
  17. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002). [CrossRef]
  18. Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32, 2942–2944 (2007). [CrossRef]
  19. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006). [CrossRef]
  20. M. A. Vincenti, D. De Ceglia, V. Roppo, and M. Scalora, “Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths,” Opt. Express 19, 2064–2078 (2011). [CrossRef]
  21. E. Barakat, M-P. Bernal, and F. I. Baida, “Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures,” Opt. Express 20, 16258–16268 (2012). [CrossRef]
  22. S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009). [CrossRef]
  23. E. Barakat, M. P. Bernal, and F. I. Baida, “Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate,” Opt. Express 18, 6530–6536 (2010). [CrossRef]
  24. F. I. Baida, A. Belkhir, and D. Van Labeke, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006). [CrossRef]
  25. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited