OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1981–1986

Metallic nanowire lasers

Kazuhiro Ikeda and Hitoshi Kawaguchi  »View Author Affiliations


JOSA B, Vol. 30, Issue 7, pp. 1981-1986 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001981


View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a nanolaser structure with a gold nanowire that supports long-range surface plasmon polaritons (LR-SPPs). A high refractive index semiconductor gain medium surrounding the nanowire allows the LR-SPPs to be well bound to the nanowire even for a small radius of 15nm with sufficiently small attenuation. An outermost gold shield with a radius of 400 nm is introduced to prohibit the mode from radiating out to free space when the modal cutoff-like feedback structure is used to confine the propagating mode longitudinally. Numerical simulations for an optimized structure show that the quality factor and lasing threshold gain of the resonant mode at room temperature are 158 and 1590cm1, respectively. We also find that the nanolaser supports another type of plasmonic resonant mode with localized surface plasmons on the nanowire with the outermost gold shield, which possesses a quality factor of 220 and a threshold gain of 950cm1. These gain coefficients can be obtained in bulk semiconductors.

© 2013 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 27, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: May 27, 2013
Published: June 26, 2013

Citation
Kazuhiro Ikeda and Hitoshi Kawaguchi, "Metallic nanowire lasers," J. Opt. Soc. Am. B 30, 1981-1986 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1981


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  2. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef]
  3. V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008). [CrossRef]
  4. K. Ikeda, Y. Fainman, K. A. Shore, and H. Kawaguchi, “Modified long-range surface plasmon polariton modes for laser nanoresonators,” J. Appl. Phys. 110, 063106 (2011). [CrossRef]
  5. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008). [CrossRef]
  6. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  7. C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010). [CrossRef]
  8. K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98, 231108 (2011). [CrossRef]
  9. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010). [CrossRef]
  10. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  11. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011). [CrossRef]
  12. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011). [CrossRef]
  13. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012). [CrossRef]
  14. M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi B 91, K61–K64 (1979). [CrossRef]
  15. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  16. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  17. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  18. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010). [CrossRef]
  19. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4, 457–461 (2010). [CrossRef]
  20. S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992). [CrossRef]
  21. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15, 54–59 (2004). [CrossRef]
  22. M. A. Schmidt and P. S. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008). [CrossRef]
  23. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  24. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media, 2007), Chap. 5.
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004), p. 99.
  27. G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73, 125308 (2006). [CrossRef]
  28. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988), p. 148.
  29. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003). [CrossRef]
  30. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401(R) (2008). [CrossRef]
  31. G. Colas des Francs, P. Bramant, J. Grandidier, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide,” Opt. Express 18, 16327–16334 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited