OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2066–2074

Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres

Debabrata Sikdar, Ivan D. Rukhlenko, Wenlong Cheng, and Malin Premaratne  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2066-2074 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002066


View Full Text Article

Enhanced HTML    Acrobat PDF (729 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the light scattering profile of a subwavelength layered gold–dielectric–gold nanosphere, which unveils exciting ultrasharp scattering–switching signatures based on high spectral proximity of the scattering resonance and cloaking states. Analytical expressions are derived for polarizability, resonance/cloaking conditions, and for scattering cross section of this layered metal–dielectric–metal (MDM) nanosphere, under the quasi-static limit. Our analysis allows one to thoroughly investigate its spectral response, over the entire parametric space of its dimensions and the incident light wavelength. Especially, the scattering spectra reveal multiple Fano-type, ultrasharp spectral profiles with high tunability, in terms of abrupt scattering–switching wavelengths and cloaking bandwidth, when absorption losses in the metallic layers are neglected in the analysis. Upon inclusion of bulk metallic losses along with enhanced electron surface scattering effects, these sharp spectral signatures are found to get severely faded in a realistic layered MDM nanosphere. The results obtained analytically, in each case, are found to be in excellent agreement with the numerical ones calculated based on Mie theory. We demonstrate that the ultrasharp scattering signatures of a pragmatic MDM nanosphere can be revived by introducing semiconductor gain inclusions in the middle dielectric layer, mitigating losses in the metallic layers.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: May 21, 2013
Manuscript Accepted: June 3, 2013
Published: July 11, 2013

Citation
Debabrata Sikdar, Ivan D. Rukhlenko, Wenlong Cheng, and Malin Premaratne, "Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres," J. Opt. Soc. Am. B 30, 2066-2074 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  2. T. A. Erickson and J. W. Tunnell, “Gold nanoshells in biomedical applications,” in Mixed Metal Nanomaterials, C. S. S. R. Kumar, ed. Vol. 3 of Nanomaterials for the Life Sciences (Wiley-VCH Verlag GmbH & Co. KGaA, 2009), pp. 1–44.
  3. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4, 15–31 (2013). [CrossRef]
  4. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Optimized gold nanoshell ensembles for biomedical applications,” Nanoscale Res. Lett. 8, 142–146 (2013). [CrossRef]
  5. R. Acevedo, R. Lombardini, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells,” J. Phys. Chem. A 113, 13173–13183 (2009). [CrossRef]
  6. T. Som and B. Karmakar, “Surface plasmon resonance and enhanced fluorescence application of single-step synthesized elliptical nano gold-embedded antimony glass dichroic nanocomposites,” Plasmonics 5, 149–159 (2010). [CrossRef]
  7. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical theory of optical bistability in plasmonic nanoresonators,” J. Opt. Soc. Am. B 28, 2820–2826 (2011). [CrossRef]
  8. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  9. B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  10. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]
  11. K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010). [CrossRef]
  12. Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 131113 (2010). [CrossRef]
  13. P. Y. Chen, J. Soric, and A. Alu, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012). [CrossRef]
  14. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi (RRL) 6, 46–48 (2012). [CrossRef]
  15. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Linear transformation optics for plasmonics,” J. Opt. Soc. Am. B 29, 2659–2664 (2012). [CrossRef]
  16. A. Alu, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009). [CrossRef]
  17. E. Cojocaru, “Exact analytical approaches for elliptic cylindrical invisibility cloaks,” J. Opt. Soc. Am. B 26, 1119–1128 (2009). [CrossRef]
  18. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010). [CrossRef]
  19. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  20. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  21. C. Argyropoulos, P. Y. Chen, F. Monticone, G. DAguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012). [CrossRef]
  22. A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008). [CrossRef]
  23. F. Monticone, C. Argyropoulos, and A. Alu, “Layered plasmonic cloaks to tailor the optical scattering at the nanoscale,” Sci. Rep. 2, 912–918 (2012). [CrossRef]
  24. F. Monticone, C. Argyropoulos, and A. Alu, “Multilayered plasmonic covers for comb-like scattering response and optical tagging,” Phys. Rev. Lett. 110, 113901 (2013). [CrossRef]
  25. A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core–shell plasmonic nanowires,” Opt. Express 21, 10454–10459 (2013). [CrossRef]
  26. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999). [CrossRef]
  27. D. Wu, S. Jiang, and X. Liu, “Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell,” J. Phys. Chem. C 115, 23797–23801 (2011). [CrossRef]
  28. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10, 2694–2701 (2010). [CrossRef]
  29. M. Wang, M. Cao, X. Chen, and N. Gu, “Subradiant plasmon modes in multilayer metal–dielectric nanoshells,” J. Phys. Chem. C 115, 20920–20925 (2011). [CrossRef]
  30. J. F. Ho, B. Lukyanchuk, and J. B. Zhang, “Tunable Fano resonances in silver–silica–silver multilayer nanoshells,” Appl. Phys. A 107, 133–137 (2012). [CrossRef]
  31. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010). [CrossRef]
  32. J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993). [CrossRef]
  33. Z. Jian, L. Jian-jun, and Z. Jun-wu, “Tuning the dipolar plasmon hybridization of multishell metal–dielectric nanostructure: gold nanosphere in a gold nanoshell,” Plasmonics 6, 527–534 (2011). [CrossRef]
  34. J. Zhu, Y. Ren, S. Zhao, and J. Zhao, “The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell,” Mater. Chem. Phys. 133, 1060–1065 (2012). [CrossRef]
  35. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  36. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004). [CrossRef]
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  38. D. Wu, X. Xu, and X. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129, 074711 (2008). [CrossRef]
  39. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  40. A. Moradi, “Plasmon hybridization in coated metallic nanowires,” J. Opt. Soc. Am. B 29, 625–629 (2012). [CrossRef]
  41. R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal–dielectric layered metamaterials,” Phys. Rev. B 87, 115139 (2013). [CrossRef]
  42. D. Handapangoda, I. D. Rukhlenko, and M. Premaratne, “Optimizing the design of planar heterostructures for plasmonic waveguiding,” J. Opt. Soc. Am. B 29, 553–558 (2012). [CrossRef]
  43. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout,” Opt. Express 19, 19973–19986 (2011). [CrossRef]
  44. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008). [CrossRef]
  45. I. D. Rukhlenko, A. Pannipitiya, and M. Premaratne, “Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides,” Opt. Lett. 36, 3374–3376 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited