OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2081–2089

Parametric investigation of prism-coupled excitation of Dyakonov–Tamm waves

Drew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2081-2089 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002081


View Full Text Article

Enhanced HTML    Acrobat PDF (1293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In order to pave the way for the yet-to-be reported experimental observation of the Dyakonov–Tamm wave, the excitation of this surface wave in a prism-coupled configuration was theoretically investigated when one partnering dielectric material is isotropic and homogeneous while the other is a chiral sculptured thin film (CSTF). The excitation of a Dyakonov–Tamm wave in the prism-coupled configuration was identified by those peaks in the plots of the absorptance versus the angle of incidence that were independent of the thicknesses of both partnering materials (beyond some thresholds) and the polarization state of the incident plane wave. The results of the prism-coupled configuration were successfully correlated with the underlying canonical boundary-value problem. An increase in either the structural period or the average vapor flux angle of the CSTF results in a larger angle of incidence for experimental excitation, whereas an increase in an offset angle results in a decrease of that angle. An increase in the bulk refractive index of the material from which the CSTF is fabricated is likely to increase the angle of incidence for experimental observation. It is highly preferable for the CSTF to be an integral number of periods in thickness, and that number does not have to be large.

© 2013 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.0310) Optics at surfaces : Thin films
(240.6690) Optics at surfaces : Surface waves
(310.2790) Thin films : Guided waves

ToC Category:
Thin Films

History
Original Manuscript: May 23, 2013
Manuscript Accepted: June 4, 2013
Published: July 11, 2013

Citation
Drew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia, "Parametric investigation of prism-coupled excitation of Dyakonov–Tamm waves," J. Opt. Soc. Am. B 30, 2081-2089 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2081


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011). [CrossRef]
  2. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  3. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).
  4. A. V. Kukushkin, “On the existence and physical meaning of the Zenneck wave,” Phys. Usp. 52, 755–756 (2009). [CrossRef]
  5. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  6. T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959). [CrossRef]
  7. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  8. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  9. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  10. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [CrossRef]
  11. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999). [CrossRef]
  12. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005). [CrossRef]
  13. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007). [CrossRef]
  14. G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981). [CrossRef]
  15. R. F. Wallis, “Surface magnetoplasmons on semiconductors,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), Chap. 15.
  16. S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902 (1990). [CrossRef]
  17. F. N. Marchevskiĭ, V. L. Strizhevskiĭ, and S. V. Strizhevskiĭ, “Singular electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid State 26, 911–912 (1984).
  18. M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).
  19. O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008). [CrossRef]
  20. S. He, “Electromagnetic surface waves for some artificial bianisotropic media,” J. Electromagn. Waves Appl. 12, 449–466 (1998). [CrossRef]
  21. V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, “Integral formalism for surface electromagnetic waves in bianisotropic media,” J. Phys. A: Math. Gen. 37, 5083–5096 (2004). [CrossRef]
  22. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).
  23. A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. 2, 07021 (2007). [CrossRef]
  24. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009). [CrossRef]
  25. K. Agarwal, J. A. Polo, and A. Lakhtakia, “Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009). [CrossRef]
  26. J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011). [CrossRef]
  27. M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013). [CrossRef]
  28. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
  29. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013). [CrossRef]
  30. C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013). [CrossRef]
  31. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
  32. J. A. Polo and A. Lakhtakia, “Dyakonov–Tamm waves guided by the planar interface of an isotropic dielectric material and an electro-optic ambichiral Reusch pile,” J. Opt. Soc. Am. B 28, 567–576 (2011). [CrossRef]
  33. J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 209, 369–375 (2002). [CrossRef]
  34. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959). [CrossRef]
  35. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
  36. R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990). [CrossRef]
  37. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: arbitrary incidence,” J. Nanophoton. 3, 033502 (2009). [CrossRef]
  38. Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).
  39. I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). [CrossRef]
  40. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  41. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).
  42. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited