OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2090–2099

Optimization of plasmon–plasmon coupling in photorefractive layered media

K. R. Daly, S. B. Abbott, D. C. Smith, and G. D’Alessandro  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2090-2099 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (737 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we study grating-induced plasmon–plasmon coupling in photorefractive layered media using a weak-coupling approximation. The method used is applicable to general layered structures that support both plasmonic and optical modes, such as photorefractive liquid crystal cells. The approximate equations are accurate when compared to S matrix approaches and capture the plasmon propagation at the surface of the device along with the optical modes guided by the layered geometry underneath. Analysis of the resulting model provides insight into the effect of the control parameters in this device and the means to optimize the diffraction efficiency. For example, by considering the case in which the plasmon is spectrally separated from the guided modes it is possible to determine the optimum gold thickness and grating strength required to obtain the strongest possible diffraction.

© 2013 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3710) Materials : Liquid crystals
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: February 27, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: June 3, 2013
Published: July 12, 2013

K. R. Daly, S. B. Abbott, D. C. Smith, and G. D’Alessandro, "Optimization of plasmon–plasmon coupling in photorefractive layered media," J. Opt. Soc. Am. B 30, 2090-2099 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  5. M. Malmqvist, “Biospecific interaction analysis using biosensor technology,” Nature 361, 186–187 (1993). [CrossRef]
  6. C. Holmes, K. R. Daly, I. J. G. Sparrow, J. C. Gates, G. D’Alessandro, and P. G. R. Smith, “Excitation of surface plasmons using tilted planar-waveguide Bragg gratings,” IEEE Photon. J. 3, 777–788 (2011). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  8. N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995). [CrossRef]
  9. F. Yang and J. R. Sambles, “Optical fully leaky mode characterization of a standard liquid-crystal cell,” J. Opt. Soc. Am. B 16, 488–497 (1999). [CrossRef]
  10. M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal, Appl. Opt. 31, 3880–3891 (1992). [CrossRef]
  11. K. R. Welford and J. R. Sambles, “Detection of surface director reorientation in a nematic liquid crystal,” Appl. Phys. Lett. 50, 871–873 (1987). [CrossRef]
  12. K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987). [CrossRef]
  13. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. B 62, 502–510 (1972). [CrossRef]
  14. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988). [CrossRef]
  15. E. N. Glytsis and T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990). [CrossRef]
  16. M. Auslender and S. Hava, “Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structure,” Opt. Lett. 21, 1765–1767 (1996). [CrossRef]
  17. S. B. Abbott, K. R. Daly, G. D’Alessandro, M. Kaczmarek, and D. C. Smith, “Photorefractive control of surface plasmon polaritons in a hybrid liquid crystal cell,” Opt. Lett. 37, 2436–2438 (2012). [CrossRef]
  18. S. B. Abbott, K. R. Daly, G. D’Alessandro, M. Kaczmarek, and D. C. Smith, “Hybrid liquid crystal photorefractuve system for the photorefractive coupling of surface plasmon polaritons,” J. Opt. Soc. Am. B 29, 1947–1958 (2012). [CrossRef]
  19. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  20. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616–2623 (2004). [CrossRef]
  21. K. R. Daly, S. B. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 28, 1874–1881 (2011). [CrossRef]
  22. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  23. J. J. Quinn and K. S Yi, Solid State Physics (Springer, 2009).
  24. T. W. Preist, N. P. K. Cotter, and J. R. Sambles, “Periodic multilayer gratings of arbitrary shape,” J. Opt. Soc. Am. A 12, 1740–1748 (1995). [CrossRef]
  25. G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995). [CrossRef]
  26. L. M. Delves and J. N. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543–560 (1967). [CrossRef]
  27. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Efficient solution of eigenvalue equations of optical wave guiding structures,” J. Lightwave Technol. 12, 2080–2084 (1994). [CrossRef]
  28. K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3, 861–871 (2011). [CrossRef]
  29. K. R. Daly, N. Podoliak, O. Buchnev, M. Kaczmarek, and G. D’Alessandro, “Optimal liquid crystal modulation controlled by surface alignment and anchoring strength,” J. Opt. Soc. Am. B 29, 2166–2175 (2012). [CrossRef]
  30. A. C. King, J. Billingham, and S. R. Otto, Differential Equations: Linear, Nonlinear, Ordinary, Partial (Cambridge University, 2003).
  31. E.D. Palik, Handbook of Optical Constants of Solids, Volumes I, II, and III: Subject Index and Contributor Index (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited