OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2136–2141

Optimal atomic entanglement concentration using coherent-state input–output process in low-Q cavity quantum electrodynamics system

Cong Cao, Chuan Wang, Ling-yan He, Xin Tong, Ming Lei, and Ru Zhang  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2136-2141 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an optimal entanglement concentration protocol (ECP) for entangled solid-state systems, using the coherent-state input–output process working in the low-Q cavity quantum electrodynamics regime. The solid-state system can be described as a three-level atom confined in a one-side optical microcavity. Using the ancillary coherent optical pulse to perform the cavity input–output process, different state-dependent phase shifts of the output coherent state can be discriminated by homodyne detection, and a less-entangled atomic pair can be concentrated to maximally entangled state in a certain probability between two remote parties nonlocally. By repeating the concentration process, the remote parties can further obtain a higher success probability. Compared with conventional ECPs, only one pair of less-entangled atoms is needed in the proposed protocol, and the coherent-state input–output process is working in a low-Q cavity in the atom–cavity intermediate coupling region. With feasible technologies, this protocol may be widely used in quantum repeaters and long-distance quantum communication.

© 2013 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 14, 2013
Revised Manuscript: May 11, 2013
Manuscript Accepted: June 17, 2013
Published: July 17, 2013

Cong Cao, Chuan Wang, Ling-yan He, Xin Tong, Ming Lei, and Ru Zhang, "Optimal atomic entanglement concentration using coherent-state input–output process in low-Q cavity quantum electrodynamics system," J. Opt. Soc. Am. B 30, 2136-2141 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  5. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
  6. A. Grudka and A. Wójcik, “Symmetric scheme for superdense coding between multiparties,” Phys. Rev. A 66, 014301 (2002). [CrossRef]
  7. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  8. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
  9. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  10. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
  11. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  12. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  13. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
  14. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  15. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
  16. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
  17. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  18. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  19. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  20. C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
  21. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  22. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  23. X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A 71, 064301 (2005). [CrossRef]
  24. C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A 75, 042325 (2007). [CrossRef]
  25. C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A 86, 012323 (2012). [CrossRef]
  26. A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007). [CrossRef]
  27. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input–output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]
  28. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]
  29. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input–output process,” Phys. Rev. A 79, 064304 (2009). [CrossRef]
  30. H. Wei, Z. Deng, X. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007). [CrossRef]
  31. J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B 43, 095505 (2010).
  32. W. P. Bastos, W. B. Cardoso, A. T. Avelar, N. G. de Almeida, and B. Baseia, “Controlled teleportation via photonic Faraday rotations in low-Q cavities,” Quantum Inf. Process. 11, 1867–1881 (2012). [CrossRef]
  33. Z. H. Peng, J. Zou, X. J. Liu, and L. M. Kuang, “Teleportation of atomic and photonic states in low-Q cavity QED,” Opt. Commun. 285, 5558–5563 (2012). [CrossRef]
  34. W. P. Bastos, W. B. Cardoso, A. T. Avelar, and B. Baseia, “A note on entanglement swapping of atomic states through the photonic Faraday rotation,” Quantum Inf. Process. 10, 395–404 (2011). [CrossRef]
  35. C. Cao, C. Wang, L. Y. He, and R. Zhang, “Atomic entanglement purification and concentration using coherent state input–output process in low-Q cavity QED regime,” Opt. Express 21, 4093–4105 (2013). [CrossRef]
  36. Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A 86, 034305 (2012). [CrossRef]
  37. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96240501 (2006). [CrossRef]
  38. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184–225 (2006). [CrossRef]
  39. F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010). [CrossRef]
  40. S. L. Su, Q. Guo, L. Zhu, H. F. Wang, and S. Zhang, “Atomic quantum information processing in low-Q cavity in the intermediate coupling region,” J. Opt. Soc. Am. B 29, 2827–2833 (2012). [CrossRef]
  41. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  42. F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010). [CrossRef]
  43. M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997). [CrossRef]
  44. M. Takeoka and M. Sasaki, “Conditional generation of an arbitrary superposition of coherent states,” Phys. Rev. A 75, 064302 (1997). [CrossRef]
  45. B. Yurke and D. Stoler, “Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986). [CrossRef]
  46. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  47. S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “The efficiencies of generating cluster states with weak nonlinearities,” New J. Phys. 9, 193–212 (2007). [CrossRef]
  48. S. Nußmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005). [CrossRef]
  49. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007). [CrossRef]
  50. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007). [CrossRef]
  51. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009). [CrossRef]
  52. J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004). [CrossRef]
  53. A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited