OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2142–2147

Generation of N-atom W-class states in spatially separated cavities

Mei Lu, Yan Xia, Jie Song, and Nguyen Ba An  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2142-2147 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002142


View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a feasible and efficient scheme to generate N-atom W-class states in spatially separated cavities without using any classical driving pulses. We adopt the model in which the couplings between different atoms are mediated only by virtual excitations of the cavity and fiber fields, so the scheme is insensitive to the cavity decay and fiber photon leakage. We carry out both theoretical investigation in a decoherence-free subspace and numerical calculation accounting for decoherence due to the atomic spontaneous emission as well as the decay of cavity and fiber modes. The theoretical and numerical results agree in the large atom-cavity detuning regime. Our scheme proves to be useful in scalable distributed quantum networks.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: April 23, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 16, 2013
Published: July 17, 2013

Citation
Mei Lu, Yan Xia, Jie Song, and Nguyen Ba An, "Generation of N-atom W-class states in spatially separated cavities," J. Opt. Soc. Am. B 30, 2142-2147 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef]
  2. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  5. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  6. D. Gottesmanand and I. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999). [CrossRef]
  7. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physica (Amsterdam) 1, 195–200 (1964).
  8. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990). [CrossRef]
  9. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  10. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  11. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001). [CrossRef]
  12. J. Joo, Y. J. Park, S. Oh, and J. Kim, “Quantum teleportation via a W state,” New J. Phys. 5, 136 (2003). [CrossRef]
  13. P. Agrawal and A. Pati, “Perfect teleportation and superdense coding with W states,” Phys. Rev. A 74, 062320 (2006). [CrossRef]
  14. X. W. Wang, G. J. Yang, Y. H. Su, and M. Xie, “Simple schemes for quantum information processing with W-type entanglement,” Quant. Info. Proc. 8, 431–442 (2009). [CrossRef]
  15. S. B. Zheng, “Splitting quantum information via W states,” Phys. Rev. A 74, 054303 (2006). [CrossRef]
  16. H. Z. Wu, Z. B. Yang, W. J. Su, Z. R. Zhong, and J. M. Huang, “Quantum information splitting based on current cavity QED techniques,” Commun. Theor. Phys. 49, 1165–1168 (2008). [CrossRef]
  17. W. Cui, E. Chitambar, and H. K. Lo, “Optimal entanglement transformations among N-qubit W-class states,” Phys. Rev. A 82, 062314 (2010). [CrossRef]
  18. T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational determination of multiqubit entanglement classes via tuning of local operations,” Phys. Rev. Lett. 102, 053601 (2009). [CrossRef]
  19. N. B. An, “Cavity-catalyzed deterministic generation of maximal entanglement between nonidentical atoms,” Phys. Lett. A 344, 77–83 (2005). [CrossRef]
  20. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997). [CrossRef]
  21. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  22. J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007). [CrossRef]
  23. J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008). [CrossRef]
  24. S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010). [CrossRef]
  25. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  26. X. Y. Lü, L. G. Si, X. Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009). [CrossRef]
  27. L. T. Shen, H. Z. Wu, and Z. B. Yang, “Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics,” Eur. Phys. J. D 66, 123–127 (2012). [CrossRef]
  28. A. Sen(De), U. Sen, M. Wiésniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003). [CrossRef]
  29. T. Findakly and B. Chen, “Single-mode integrated optical 1×N star coupler,” Appl. Phys. Lett. 40, 549–550 (1982). [CrossRef]
  30. H. Feng, E. H. Li, and K. Tada, “Analysis of X-intersecting waveguide switches with a large branching angles ranging from 2° to 12°,” Jpn. J. Appl. Phys. 36, 5136–5142 (1997). [CrossRef]
  31. L. B. Yuan and L. M. Zhou, “1×N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer,” Appl. Opt. 37, 4168–4172 (1998). [CrossRef]
  32. C. Dragone, C. H. Henry, I. P. Kaminow, and R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989). [CrossRef]
  33. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004). [CrossRef]
  34. A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002). [CrossRef]
  35. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  36. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001). [CrossRef]
  37. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003). [CrossRef]
  38. F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited