OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2161–2167

Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser

Peilin Li, Xing Fu, Qiang Liu, and Mali Gong  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2161-2167 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser is numerically analyzed. By using the large-eddy-simulation model, the structure of time-random turbulent eddies are described and the effects of turbulent eddies on wavefront aberration are illustrated, indicating that the wavefront aberration varies primarily with the temperature field. By integrating the thermal-induced variations of the refractive index along the laser beam path within the flowing liquid, the two-dimensional wavefront aberration is obtained, showing that the wavefront aberration occurs mainly at the thermal boundary layer, where the temperature gradient is large.

© 2013 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 16, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: June 28, 2013
Published: July 17, 2013

Peilin Li, Xing Fu, Qiang Liu, and Mali Gong, "Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser," J. Opt. Soc. Am. B 30, 2161-2167 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009). [CrossRef]
  2. S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.
  3. K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007). [CrossRef]
  4. M. Ostermeyer, D. Mudge, P. J. Veitch, and J. Munch, “Thermally induced birefringence in Nd:YAG slab lasers,” Appl. Opt. 45, 5368–5376 (2006). [CrossRef]
  5. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005). [CrossRef]
  6. M. Schmid, Th. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. Opt. Soc. Am. B 17, 1398–1404 (2000). [CrossRef]
  7. Y. Lumer, I. Moshe, A. Meir, Y. Paiken, G. Machavariani, and S. Jackel, “Effects of thermally induced aberrations on radially and azimuthally polarized beams,” J. Opt. Soc. Am. B 24, 2279–2286 (2007). [CrossRef]
  8. H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006). [CrossRef]
  9. H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.
  10. J. Speiser, “Scaling of thin-disk lasers—influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26, 26–35 (2009). [CrossRef]
  11. “High energy liquid laser area defense system,” http://en.wikipedia.org/wiki/High_Energy_Liquid_Laser_Area_Defense_System .
  12. M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent7,366,211 (Apr.29, 2008).
  13. A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThH2.
  14. X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).
  15. J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26, 549–558 (2006). [CrossRef]
  16. J. P. Siegenthaler, “Guidelines for adaptive-optic correction based on aperture filtration,” Ph.D. disstertation (University of Notre Dame, 2009).
  17. Z. Tao, “Effect of magnetic field of light on refractive index,” Chin. Phys. 13, 1358–1364 (2004). [CrossRef]
  18. J. H. Ferziger and M. Perić, Solution of the Navier–Stokes Equations (Springer, 2002).
  19. P. Rollet-Miet, D. Laurence, and J. Ferziger, “LES and RANS of turbulent flow in tube bundles,” Int. J. Heat Fluid Flow 20, 241–254 (1999). [CrossRef]
  20. F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004). [CrossRef]
  21. X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited