OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2174–2181

Nonresonant parametric amplification of the spontaneous Brillouin–Rayleigh triplet resulting from two-photon absorption

Vladimir B. Karpov and Vladlen V. Korobkin  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2174-2181 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The thin structures of stimulated Brillouin scattering (SBS) and stimulated temperature scattering (STS) spectral components caused by two-photon heating are analyzed theoretically. In contrast to the linear (single photon) case for two-photon heating, a Stokes SBS component exhibits the spectral shift depending on the pump intensity. Emergence of an anti-Stokes SBS component is possible when the pump intensity is sufficiently high so that the positive two-photon thermal gain may compensate for the negative electrostrictive gain. The spectral components of STS caused by linear or two-photon absorption (essentially different linear or two-photon STS-2) possess the same thin structures.

© 2013 Optical Society of America

OCIS Codes
(140.2180) Lasers and laser optics : Excimer lasers
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4180) Nonlinear optics : Multiphoton processes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: March 29, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: June 2, 2013
Published: July 18, 2013

Vladimir B. Karpov and Vladlen V. Korobkin, "Nonresonant parametric amplification of the spontaneous Brillouin–Rayleigh triplet resulting from two-photon absorption," J. Opt. Soc. Am. B 30, 2174-2181 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kielich, Molecular Nonlinear Optics (PWN, 1977; Nauka, 1981).
  2. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Spectroscopy of Light Scattering (Nauka, 1981) [in Russian].
  3. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967). [CrossRef]
  4. V. S. Starunov and I. L. Fabelinskii, “Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,” Usp. Fiz. Nauk 98, 441–491 (1969) [Sov. Phys. Usp. 12, 463–489 (1970)].
  5. V. B. Karpov and V. V. Korobkin, “Stimulated thermal scattering induced by two-photon absorption and experimental observation of genuine stimulated Brillouin scattering in the near-ultraviolet region,” Phys. Rev. A 77, 063812 (2008). [CrossRef]
  6. B. J. Feldman, R. A. Fisher, A. Robert, and S. L. Shapiro, “Ultraviolet phase conjugation,” Opt. Lett. 6, 84–86 (1981). [CrossRef]
  7. R. G. Caro and M. C. Gower, “Phase conjugation of KrF laser radiation,” Opt. Lett. 6, 557–559 (1981). [CrossRef]
  8. M. C. Gower and R. G. Caro, “KrF laser with a phase-conjugate Brillouin mirror,” Opt. Lett. 7, 162–164 (1982). [CrossRef]
  9. M. C. Gower, “KrF laser amplifier with phase-conjugate Brillouin retroreflectors,” Opt. Lett. 7, 423–425 (1982). [CrossRef]
  10. E. Armandillo and D. Proch, “Highly efficient, high-quality phase-conjugate reflection at 308 nm using stimulated Brillouin scattering,” Opt. Lett. 8, 523–525 (1983). [CrossRef]
  11. M. C. Gower, “Phase conjugation at 193 nm,” Opt. Lett. 8, 70–72 (1983). [CrossRef]
  12. G. M. Davis and M. C. Gower, “Stimulated Brillouin scattering of a KrF laser,” IEEE J. Quantum Electron. 27, 496–501 (1991). [CrossRef]
  13. S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].
  14. S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].
  15. B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, 1985; Nauka, 1985).
  16. V. G. Dmitriev, Nonlinear Optics and Phase Conjugation (Fizmatlit, 2003) [in Russian].
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984; Nauka, 1989).
  18. B. Ya. Zel’dovich and I. I. Sobel’man, “Stimulated light scattering induced by absorption,” Usp. Fiz. Nauk 101, 3–20 (1970) [Sov. Phys. Usp. 13, 307–317 (1970)]. [CrossRef]
  19. N. M. Kroll, “Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves,” J. Appl. Phys. 36, 34–44 (1965). [CrossRef]
  20. C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2956 (1966). [CrossRef]
  21. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968; Nauka, 1965).
  22. N. Bloembergen, Nonlinear Optics (W. A. Benjamin Inc., 1965; Mir, 1966).
  23. R. M. Herman and M. A. Gray, “Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,” Phys. Rev. Lett. 19, 824–828 (1967). [CrossRef]
  24. M. A. Gray and R. M. Herman, “Nonlinear thermal Rayleigh scattering in gases,” Phys. Rev. 181, 374–379 (1969). [CrossRef]
  25. R. N. Enns and I. P. Batra, “Stimulated thermal scattering in the second-sound regime,” Phys. Rev. 180, 227–232 (1969). [CrossRef]
  26. J. M. Vaughan, “Correlation analysis and interoferometry in laser spectroscopy of scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 432–458.
  27. E. R. Pike, “Theory of light scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 17–45.
  28. L. D. Landau and E. M. Lifshitz, Mechanics Vol. 1 of Course of Theoretical Physics (Pergamon, 1976; Nauka, 1988).
  29. L. G. Loitsianskii, Mechanics of Liquids and Gases (Pergamon, 1966; Drofa, 2003).
  30. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course of Theoretical Physics (Pergamon, 1986; Nauka, 1987).
  31. J. Lamb, “Thermal relaxation in liquids,” in Physical Acoustics Principles and Methods, W. P. Mason, ed., Vol. IIPart A, Properties of Gases, Liquids and Solutions (Academic, 1965; Mir, 1968), pp. 222–297.
  32. A. Bambini, R. Vallauri, and M. Zoppi, “Nonlinear spectroscopy of Rayleigh and Mandel’stan-Brillouin scattering in liquids,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, 1977; Mir, 1979), pp. 569–582.
  33. V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, 1991) [in Russian].
  34. I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, 1964) [in Russian].
  35. L. D. Landau and E. M. Lifshitz, Hydrodynamics, Vol. 6 ofCourse of Theoretical Physics (Pergamon, 1984; Nauka, 1986).
  36. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Pergamon, 1984; Nauka, 1982).
  37. S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics 1962-1963 (VINITI, 1964) [in Russian].
  38. V. F. Nozdrev, The Use of Ultrasonics in Molecular Physics (Pergamon, 1965; Fizmatlit, 1958).
  39. M. I. Shakhparonov, Methods for Studying Heat Motion of Molecules and Structure of Liquids (Moscow State University, 1963) [in Russian].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited