OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2182–2190

Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold–ZnS–air interface and decoupling to free waves at the surface edge

Vasily V. Gerasimov, Boris A. Knyazev, Igor A. Kotelnikov, Alexey K. Nikitin, Valery S. Cherkassky, Gennady N. Kulipanov, and Guerman N. Zhizhin  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2182-2190 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (869 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we experimentally study the propagation of surface plasmon polaritons (SPPs) along gold–ZnS–air interfaces and their diffraction at the surface edge. The SPPs were launched by the waveguide method using monochromatic radiation of the Novosibirsk Free-Electron Laser, operated at the wavelength 140 μm. SPP characteristics were studied via examination of the electromagnetic field of diffracted waves employing two terahertz sensors: a movable Golay cell and an optical system, consisting of a TPX lens and a 320×240 microbolometer focal plane array (MBFPA) recording images with a rate of 17frames/s. The experimentally recorded intensity distribution of the diffracted wave in the direction normal to the surface differed from the evanescence wave distribution in the SPP, but their characteristic widths were practically the same and coincided with the theoretical calculations made within the Drude model [Phys. Rev. A 87, 023828 (2013)]. Diffracted wave characteristics drastically changed when ZnS-layer thickness increased from 0 to 0.75 μm. The angular distributions grew from 0.16 to 3.6 deg, but the characteristic beam width decreased from 8 to 0.35 mm, which is promising for a number of applications. The propagation length of SPPs therewith decreased from 31 to 11 mm, which is 3 orders of magnitude less than the Drude theory predicts. Prospects for further studies are discussed.

© 2013 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Imaging Systems

Original Manuscript: March 1, 2013
Manuscript Accepted: May 31, 2013
Published: July 18, 2013

Vasily V. Gerasimov, Boris A. Knyazev, Igor A. Kotelnikov, Alexey K. Nikitin, Valery S. Cherkassky, Gennady N. Kulipanov, and Guerman N. Zhizhin, "Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold–ZnS–air interface and decoupling to free waves at the surface edge," J. Opt. Soc. Am. B 30, 2182-2190 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. N. Zhizhin, O. I. Kapusta, M. A. Moskaleva, V. G. Nazin, and V. A. Yakovlev, “Surface wave spectroscopy and properties of the surface,” Sov. Phys. Usp. 18, 927–928 (1975). [CrossRef]
  2. G. N. Zhizhin, M. A. Moskaleva, E. V. Shomina, and V. A. Yakovlev, “Surface electromagnetic wave propagation on metal surfaces,” in Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces, V. M. Agranovich and D. L. Mills, eds. (North-Holland, 1982), chap. 3.
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  4. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. A. Sommerfeld, “Fortpflanzung electrodynamischer Wellen an einem zylindrischen Leiter (Transmission of electrodynamic waves along a cylindrical conductor),” Ann. Phys. (Berlin) 303, 233–290 (1899). [CrossRef]
  7. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen läangs einer ebenen Leiterfläache und ihre Beziehung zur dratlosen Telegraphie (On the propagation of plane electromagnetic waves along a planar conductor surface and its relationship to wireless telegraphy),” Ann. Phys. Ser. 4 23, 848–866 (1907).
  8. R. T. Ling, J. D. Scholler, and P. Ya. Ufimtsev, “The propagation and excitation of surface waves in an absorbing layer,” Prog. Electromagn. Res. 19, 49–91 (1998). [CrossRef]
  9. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave THz surface plasmon propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  10. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009). [CrossRef]
  11. A. V. Kukushkin, A. A. Rukhadze, and K. Z. Rukhadze, “On the existence conditions for a fast surface wave,” Phys. Usp. 55, 1124–1133 (2012). [CrossRef]
  12. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  13. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991). [CrossRef]
  14. J. F. O’Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” Int. J. Infrared Millim. Waves 33, 245–291 (2012). [CrossRef]
  15. S. S. Attwood, “Surface-wave propagation over a coated plane conductor,” J. Appl. Phys. 22, 504–509 (1951). [CrossRef]
  16. P. Dawson, F. de Fornel, and J.-P. Goudonett, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994). [CrossRef]
  17. B. A. Knyazev and A. V. Kuzmin, “Surface electromagnetic waves: from visible range to microwaves,” Vestn. Novosib. State Univ. Phys. 2, 108–122 (2007) (in Russian).
  18. J. Lloyd-Hughes and T.-I. Jeon, “A review of the terahertz condactivity of bulk and nano-materials,” Int. J. Infrared Millim. Waves 33871–925 (2012). [CrossRef]
  19. R. J. Seymour, E. S. Koteles, and G. I. Stegeman, “Far-infrared surface plasmon coupling with overcoated gratings,” Appl. Phys. Lett. 41, 1013–1015 (1982). [CrossRef]
  20. K. W. Steijn, R. J. Seymour, and G. I. Stegeman, “Attenuation of far-infrared surface plasmons on overcoated metal,” Appl. Phys. Lett. 49, 1151–1153 (1986). [CrossRef]
  21. J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domane measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004). [CrossRef]
  22. M. Nazarov and J.-L. Coutaz, “Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs,” Int. J. Infrared Millim. Waves 321054–1073 (2011). [CrossRef]
  23. N. A. Vinokurov, E. N. Dementyev, B. A. Dovzhenko, A. A. Galt, Ya. V. Getmanov, B. A. Knyazev, E. I. Kolobanov, V. V. Kubarev, G. N. Kulipanov, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, B. Z. Persov, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, M. G. Vlasenko, P. Vobly, and N. S. Zaigraeva, “Status and prospects of the Novosibirsk FEL facility,” in Proceedings of XXII Russian Particle Accelerator Conference, RuPAC-2010, Protvino, Russia, 2010, Sept.27–Oct. 1 (RAS, 2010), pp. 133–135.
  24. B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements,” Meas. Sci. Technol. 21, 054017 (2010). [CrossRef]
  25. K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10, 105003 (2008). [CrossRef]
  26. R. Mueckstein and O. Mitrofanov, “Imaging of terahertz surface plasmon waves excited on a gold surface by a focused beam,” Opt. Express 19, 3212–3217 (2011). [CrossRef]
  27. T. Okada, M. Nagai, and K. Tanaka, “Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region,” Opt. Express 16, 5633–5641 (2008). [CrossRef]
  28. R. J. Seymour, J. J. Krupczak, and G. I. Stegeman, “High efficiency coupling to the overcoated surface plasmon mode in the far infrared,” Appl. Phys. Lett. 44, 373–375 (1984). [CrossRef]
  29. G. Chartier, K. J. Woo, E. Pic, R. Reinisch, and G. Voirin, “Diffraction d’une onde électromagnétique de surface par l’extrémité du support de propagation,” J. Phys. 45, 429–433 (1984). [CrossRef]
  30. R. F. Wallis, A. A. Maradudin, and G. I. Stegeman, “Surface plasmon reflection and radiation at end faces,” Appl. Phys. Lett. 42, 764–766 (1983). [CrossRef]
  31. A. A. Maradudin, R. F. Wallis, and G. I. Stegeman, “The optics of surfaces and guided wave polaritons,” Prog. Surf. Sci. 33171–257 (1990). [CrossRef]
  32. H. A. Jamid and S. J. Al-Bader, “Diffraction of surface plasmon-polaritons in an abruptly terminated dielectric–metal interface,” IEEE Photon. Technol. Lett. 7321–323 (1995). [CrossRef]
  33. V. B. Zon, “Reflection, refraction, and transformation into photons of surface plasmons on a metal wedge,” J. Opt. Soc. Am. B 24, 1960–1967 (2007). [CrossRef]
  34. I. A. Kotelnikov, V. V. Gerasimov, and B. A. Knyazev, “Diffraction of surface wave on conducting rectangular wedge,” Phys. Rev. A 87, 023828 (2013). [CrossRef]
  35. E. S. Koteles and W. H. McNeill, “Far infrared surface plasmon propagation,” Int. J. Infrared Millim. Waves 2, 361–371 (1981). [CrossRef]
  36. N. W. Ashkroft and N. D. Mermin, Solid State Physics (Harcourt, 1976).
  37. M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, and V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47, 109–113 (2011).
  38. Tydex., “Golay cells,” http://www.tydexoptics.com/en/products/thz_optics/golay_cell/ .
  39. I. Pockrand, “Surface plasma oscillations at silver surfaces with transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978). [CrossRef]
  40. Z. Schlesinger and A. J. Sievers, “IR surface-plasmon attenuation coefficients for Ge-coated Ag and Au metals,” Phys. Rev. B 26, 6444–6454 (1982). [CrossRef]
  41. G. N. Zhizhin, A. K. Nikitin, G. D. Bogomolov, V. V. Zavialov, Y. U. Jeong, L. B. Cheol, S. H. Park, and H. J. Cha, “Absorption of surface plasmons in a metal-cladding layer-air structure in the terahertz frequency range,” Opt. Spectrosc. 100, 734–738 (2006). [CrossRef]
  42. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) (in Russian).
  43. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  44. G. E. H. Reuter and E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. A 195, 336–364 (1948). [CrossRef]
  45. R. B. Dingle, “The anomalous skin effect and reflectivity of metals,” Physica 19, 311–347 (1953). [CrossRef]
  46. C. G. Malone, “A technique for the measurement of the far-infrared radiative properties of metal and superconductor thin films,” Ph.D. thesis (Massachusetts Institute of Technology, 1997).
  47. G. Brandli and A. J. Sievers, “Absolute measurement of the far-infrared surface resistance of Pb,” Phys. Rev. B 5, 3550–3557 (1972). [CrossRef]
  48. J. M. Ziman, Electrons and Phonons (Oxford University, 1960).
  49. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).
  50. J. B. Marion, Classical Electromagnetic Radiation (Academic, 1965).
  51. D. L. Begley, R. W. Alexander, C. A. Ward, R. Miller, and R. J. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245–251 (1979). [CrossRef]
  52. L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771–4776 (2006). [CrossRef]
  53. M. Martl, J. Darmo, K. Unterrainer, and E. Gorni, “Excitation of terahertz surface plasmon polaritons on etched groove gratings,” J. Opt. Soc. Am. B 26, 554–558 (2009). [CrossRef]
  54. M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C.R. Physique 9, 232–247 (2008). [CrossRef]
  55. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33–39 (2007). [CrossRef]
  56. R. A. Flynn, I. Vurgaftman, K. Bussmann, B. S. Simpkins, Ch. S. Kim, and J. P. Long, “Transmission efficiency of surface plasmon polaritons across gaps in gold waveguides,” Appl. Phys. Lett. 96, 111101 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited