OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2215–2225

Light scattering from coupled plasmonic nanospheres on a substrate

Huai-Yi Xie and Yia-Chung Chang  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2215-2225 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002215


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient numerical method based on half-space Green’s function and spherical harmonics expansion is used to study the light scattering from coupled multiple nanospheres on a substrate. The ellipsometric spectra for various geometries of coupled Au nanospheres are calculated and analyzed to realize the effects of plasmonic coupling of closely spaced nanospheres. With only a few parameters to describe the distribution of various coupled nanosphere clusters embedded in a random distribution of nanospheres, the calculated ellipsometric spectra can fit the experimental data very well. This illustrates that our realistic model calculations can be used for determination of the distribution of nanospheres on a substrate or embedded in multilayer structures, such as biological samples.

© 2013 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(150.3045) Machine vision : Industrial optical metrology
(290.5825) Scattering : Scattering theory

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 30, 2013
Revised Manuscript: June 28, 2013
Manuscript Accepted: June 29, 2013
Published: July 22, 2013

Citation
Huai-Yi Xie and Yia-Chung Chang, "Light scattering from coupled plasmonic nanospheres on a substrate," J. Opt. Soc. Am. B 30, 2215-2225 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011). [CrossRef]
  2. T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008). [CrossRef]
  3. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010). [CrossRef]
  4. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tenability,” Nano Lett. 10, 3184–3189 (2010). [CrossRef]
  5. M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108, 077404 (2012). [CrossRef]
  6. H. Liu, J. Ng, S. B. Wang, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13, 073040 (2011). [CrossRef]
  7. S. H. Hsu, Y. C. Chang, Y. C. Chen, P. K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18, 1310–1315 (2010). [CrossRef]
  8. H. Y. Xie, Y. C. Chang, G. Li, and S. H. Hsu, “Effect of clustering on ellipsometric spectra of randomly distributed gold nanoparticles on a substrate,” Opt. Express 21, 3091–3102 (2013). [CrossRef]
  9. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74, 033402 (2006).
  10. V. Twersky, “Multiple scattering of waves and optical phenomena,” J. Opt. Soc. Am. 52, 145–171 (1962). [CrossRef]
  11. K. A. Fuller and G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II: clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988). [CrossRef]
  12. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 433, 599–614 (1991). [CrossRef]
  13. Y. I. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995). [CrossRef]
  14. Y. I. Xu, “Electromagnetic scattering by an aggregate of spheres: errata,” Appl. Opt. 37, 6494 (1998). [CrossRef]
  15. Y. I. Xu and B. A. S. Gustafson, “Experimental and theoretical results of light scattering by aggregates of spheres,” Appl. Opt. 36, 8026–8030 (1997). [CrossRef]
  16. A. Pikulin, A. Afanasiev, N. Agareva, A. P. Alexandrov, V. Bredikhin, and N. Bityurin, “Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres,” Opt. Express 20, 9052–9057 (2012). [CrossRef]
  17. A. Lakhtakia, “Dyadic Green’s functions for an isotropic chiral half-space bounded by a perfectly conducting plane,” Int. J. Electron. 71, 139–144 (1991). [CrossRef]
  18. A. Lakhtakia, “Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane,” Int. J. Infrared Millim. Waves 13, 161–170 (1992). [CrossRef]
  19. Y. C. Chang, G. Li, H. Chu, and J. Opsal, “Efficient finite-element Green’s function approach for CD metrology of 3D gratings on multilayer films,” J. Opt. Soc. Am. A 23, 638–645 (2006). [CrossRef]
  20. F. Riazuddin, Quantum Mechanics (World Scientific, 1990).
  21. E. D. Palik, ed., Handbook of Optical Constant of Solid (Academic, 1985), Vol. 1.
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particle (Wiley, 1983).
  23. Here we correct an error of our previous work [8]. Equation (11) of [8] should be replaced by Eq. (22) in the present paper. With this correction and by using a larger (convergent) set of basis functions (with ℓc =6), the best-fit value for the coherent length becomes 3500 nm.
  24. H. Y. Xie, Y. C. Chang, G. Li, and S. H. Hsu, http://arxiv.org/abs/1305.6423 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited