OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2233–2239

Core-resonance cylindrical whispering gallery mode laser of dye-doped nematic liquid crystal

Yusuke Nagai, Ryushi Fujimura, and Kotaro Kajikawa  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2233-2239 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (880 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A core-resonance cylindrical whispering gallery mode (WGM) laser is reported in dye-doped nematic liquid crystals (NLCs) filled in a glass capillary. This laser runs on the basis of the properties that NLC has an extraordinary refractive index much higher than that of a glass and that it plays as a good solvent for laser dye. The conditions of the WGM lasing are investigated on the basis of gain and loss of the core medium. The NLC is a material suitable for optofluidic core-resonance cylindrical WGM lasers, which are promising, from an application viewpoint, for biodevices or analytical microdevices.

© 2013 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.4780) Lasers and laser optics : Optical resonators
(160.3710) Materials : Liquid crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 1, 2013
Revised Manuscript: May 28, 2013
Manuscript Accepted: May 28, 2013
Published: July 22, 2013

Yusuke Nagai, Ryushi Fujimura, and Kotaro Kajikawa, "Core-resonance cylindrical whispering gallery mode laser of dye-doped nematic liquid crystal," J. Opt. Soc. Am. B 30, 2233-2239 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998). [CrossRef]
  2. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008). [CrossRef]
  3. Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005). [CrossRef]
  4. S. M. Morris, A. J. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106, 023112 (2009). [CrossRef]
  5. H. Shirvani-Mahdavi, E. Mohajerani, and S.-T. Wu, “Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder,” Opt. Express 18, 5021–5027 (2010). [CrossRef]
  6. S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004). [CrossRef]
  7. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006). [CrossRef]
  8. C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18, 2406–2412 (2010). [CrossRef]
  9. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006). [CrossRef]
  10. B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials 31, 375–379 (2008). [CrossRef]
  11. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009). [CrossRef]
  12. C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Juang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Frèedericksz transition threshold,” Opt. Express 19, 2391–2400 (2011). [CrossRef]
  13. S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012). [CrossRef]
  14. D. Dunmur and K. Toriyama, “Optical properties,” in Physical Properties of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds. (Wiley-VCH, 1999), pp. 113–128.
  15. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006). [CrossRef]
  16. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006). [CrossRef]
  17. M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009). [CrossRef]
  18. C. Knight, H. S. T. Driver, and G. N. Robertson, “Morphology-dependent resonances in a cylindrical dye microlaser: mode assignments, cavity Q values, and critical dye concentrations.” J. Opt. Soc. Am. B 11, 2046–2053 (1994). [CrossRef]
  19. H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000). [CrossRef]
  20. H.-J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett. 80, 3250–3252 (2002). [CrossRef]
  21. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007). [CrossRef]
  22. J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express 16, 10248–10253 (2008). [CrossRef]
  23. A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005). [CrossRef]
  24. Y.-X. Zhang, X.-Y. Pu, K. Zhu, and L. Feng, “Threshold property of whispering-gallery-mode fiber lasers pumped by evanescent waves” J. Opt. Soc. Am. B 28, 2048–2056 (2011). [CrossRef]
  25. H. Taniguchi and S. Tanosaki, “Three-color whispering-gallery-mode dye lasers using dye-doped liquid spheres,” Jpn. J. Appl. Phys. 32L1421–L1424 (1993). [CrossRef]
  26. H. Cao, “Random lasers: development, features, and applications,” Opt. Photon. News 16, 24–29 (2005). [CrossRef]
  27. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Photonics 4, 359–367 (2008).
  28. V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited