OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2240–2247

Gap soliton and quasi-linear 2π pulse in continuous resonant photonic crystals

Lidiya V. Frolova, Alexander A. Skorynin, and Boris I. Mantsyzov  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2240-2247 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (522 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear interaction of coherent intensive optical radiation with continuous resonant photonic crystal (RPC) is analytically and numerically studied in the framework of semiclassical approach using the two-wave Maxwell–Bloch equations. The analytical solution being the gap soliton of self-induced transparency is obtained in the case of an initially unexcited continuous RPC. This solution is confirmed numerically. Influence of both initial inversion and resonant atom concentration function profile on the pulse dynamics in continuous RPC is analyzed. Suppression of the Bragg reflection and a “quasi-linear” 2 π pulse propagation in the case of zero initial inversion in continuous RPC is shown. The possibility of laser pulse compression using slow spatial changing of resonant atom concentration is demonstrated.

© 2013 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5530) Quantum optics : Pulse propagation and temporal solitons
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: April 23, 2013
Revised Manuscript: June 22, 2013
Manuscript Accepted: June 23, 2013
Published: July 24, 2013

Lidiya V. Frolova, Alexander A. Skorynin, and Boris I. Mantsyzov, "Gap soliton and quasi-linear 2π pulse in continuous resonant photonic crystals," J. Opt. Soc. Am. B 30, 2240-2247 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  2. K. Busch, G. Von Freymann, S. Linder, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007). [CrossRef]
  3. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  4. B. I. Mantsyzov and R. N. Kuzmin, “Coherent interaction of light with a discrete periodic resonant medium,” Zh. Eksp. Teor. Fiz. 91, 65–77 (1986) [Sov. Phys. JETP 64, 37–44 (1986)].
  5. A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors: gap solitons near absorption resonators,” Phys. Rev. Lett. 74, 5020–5023 (1995). [CrossRef]
  6. N. Akozbek and S. John, “Self-induced transparency solitary waves in a doped nonlinear photonic band gap material,” Phys. Rev. E 58, 3876–3895 (1998). [CrossRef]
  7. E. V. Kazantseva and A. I. Maimistov, “Polaritonic gap-soliton propagation through a wide defect in a resonantly absorbing Bragg grating,” Phys. Rev. B 79, 033812 (2009).
  8. R. A. Vlasov and A. M. Lemeza, “Bistable moving optical solitons in resonant photonic crystal,” Phys. Rev. A 84, 023828 (2011). [CrossRef]
  9. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef]
  10. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989). [CrossRef]
  11. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989). [CrossRef]
  12. J. T. Mok, C. M. deSterke, and B. J. Eggleton, “Delay-tunable gap-soliton-based slow-light system,” Opt. Express 14, 11987–11996 (2006). [CrossRef]
  13. J. T. Mok, C. M. deSterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap soliton,” Nat. Phys. 2, 775–780 (2006). [CrossRef]
  14. C. Conti, S. Trillo, and G. Assanto, “Doubly resonant Bragg simultons via second-harmonic generation,” Phys. Rev. Lett. 78, 2341–2344 (1997). [CrossRef]
  15. C. Conti, G. Assanto, and S. Trillo, “Self-sustained trapping mechanism of zero-velocity parametric gap-solitons,” Phys. Rev. E 59, 2467–2470 (1999). [CrossRef]
  16. B. I. Mantsyzov and R. A. Silnikov, “Unstable excited and stable oscillating gap 2pi-pulses,” J. Opt. Soc. Am. B 19, 2203–2207 (2002). [CrossRef]
  17. B. I. Mantsyzov, “Optical zoomeron as a result of beatings of the internal modes of a bragg soliton,” JETP Lett. 82, 253–258 (2005). [CrossRef]
  18. B. I. Mantsyzov, I. V. Mel’nikov, and J. S. Aitchison, “Controlling light by light in a one-dimensional resonant photonic crystal,” Phys. Rev. E 69, 055602 (2004). [CrossRef]
  19. W. N. Xiao, J. Y. Zhou, and J. P. Prineas, “Storage of ultrashort optical pulses in a resonantly absorbing Bragg reflector,” Opt. Express 11, 3277–3288 (2003). [CrossRef]
  20. W. Xiao, “Trapping gap solitons in a resonant photonic crystal of finite length,” Phys. Rev. E 75, 066610 (2007). [CrossRef]
  21. S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, “Mesoporous silicon photonic structures of thousands of periods,” J. Appl. Phys. 112, 013106 (2012). [CrossRef]
  22. S. E. Svyahovskiy, V. O. Kompanets, A. I. Maidykovskiy, T. V. Murzina, S. V. Chekalin, V. A. Bushuev, A. A. Skorynin, and B. I. Mantsyzov, “Observation of diffraction-induced laser pulse splitting in a photonic crystal,” Phys. Rev. A 86013843 (2012). [CrossRef]
  23. B. I. Mantsyzov, E. V. Petrov, and M. V. Fedotov, “Gap soliton of self-induced transparency in periodic structure with arbitrary modulated density of resonant atoms,” Bull. Russ. Acad. Sci., Phys. 70, 167–173 (2006).
  24. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).
  25. F. Arecchi and E. Courtens, “Cooperative phenomena in resonant electromagnetic propagation,” Phys. Rev. A 2, 1730–1737 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited