OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2263–2270

Complete and deterministic analysis for spatial-polarization hyperentangled Greenberger–Horne–Zeilinger states with quantum-dot cavity systems

Qian Liu and Mei Zhang  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2263-2270 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Entangled state analysis is one of the basic techniques in quantum information processing. However, it is impossible to fully distinguish the three-photon Greenberger–Horne–Zeilinger (GHZ) states with only linear optical elements. Here, we propose a deterministic scheme to complete three-photon spatial-polarization hyperentangled GHZ-state analysis (HGSA) by using the giant optical Faraday rotation induced by an excess electron spin in a quantum dot inside a one-sided optical microcavity as a result of cavity quantum electrodynamics. It is divided into two steps. The first step is used to distinguish the eight three-photon GHZ states in the spatial-mode degree of freedom (DOF) without destroying the polarization states. The second step is used to distinguish the eight GHZ states in the polarization DOF. This scheme can be generalized to N-photon spatial-polarization HGSA and has useful applications in quantum communication protocols.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: May 15, 2013
Manuscript Accepted: June 11, 2013
Published: July 24, 2013

Qian Liu and Mei Zhang, "Complete and deterministic analysis for spatial-polarization hyperentangled Greenberger–Horne–Zeilinger states with quantum-dot cavity systems," J. Opt. Soc. Am. B 30, 2263-2270 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
  3. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
  4. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993). [CrossRef]
  5. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  6. X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
  7. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  8. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
  9. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
  10. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
  11. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  12. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  13. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
  14. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  15. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002); the first version, submitted on Dec. 13, 2000, to arXiv.org (arXiv:quant-ph/0012056), claims clearly that this protocol can be used to transmit secret message directly.
  16. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  17. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  18. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999). [CrossRef]
  19. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999). [CrossRef]
  20. J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301 (2002). [CrossRef]
  21. J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006). [CrossRef]
  22. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007). [CrossRef]
  23. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006). [CrossRef]
  24. A. Yabushita and T. Kobayashi, “Spectroscopy by frequency-entangled photon pairs,” Phys. Rev. A 69, 013806 (2004). [CrossRef]
  25. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008). [CrossRef]
  26. C. Wang, L. Xiao, W. Y. Wang, G. Y. Zhang, and G. L. Long, “Quantum key distribution using polarization and frequency hyperentangled photons,” J. Opt. Soc. Am. B 26, 2072–2076 (2009). [CrossRef]
  27. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef]
  28. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization entanglement purification based on parametric down conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  29. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  30. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
  31. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
  32. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
  33. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003). [CrossRef]
  34. S. Y. Song, Y. Cao, Y. B. Sheng, and G. L. Long, “Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement,” Quant. Info. Proc. 12, 381–393 (2013). [CrossRef]
  35. T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007). [CrossRef]
  36. N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011). [CrossRef]
  37. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010). [CrossRef]
  38. F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
  39. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  40. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  41. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
  42. Y. B. Sheng and L. Zhou, “Quantum entanglement concentration based on nonlinear optics for quantum communications,” Entropy 15, 1776–1820 (2013). [CrossRef]
  43. Y. Xia, Q. Q. Chen, J. Song, and H. S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1029–1037 (2012). [CrossRef]
  44. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006). [CrossRef]
  45. J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010). [CrossRef]
  46. X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009). [CrossRef]
  47. J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, and A. S. Lyon, “Solid-state quantum memory using the P31 nuclear spin,” Nature 455, 1085–1088 (2008). [CrossRef]
  48. D. Hanneke, J. P. Home, J. D. Jost, J. M. Amini, D. Leibfried, and J. D. Wineland, “Realization of a programmable two-qubit quantum processor,” Nat. Phys. 6, 13–16 (2009). [CrossRef]
  49. K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and L. M. K. Vandersypen, “Coherent control of a single electron spin with electric fields,” Science 318, 1430–1433 (2007). [CrossRef]
  50. M. H. Mikkelsen, J. Berezovsky, L. A. Coldren, N. G. Stoltz, and D. D. Awschalom, “Optically detected coherent spin dynamics of a single electron in a quantum dot,” Nat. Phys. 3, 770–773 (2007). [CrossRef]
  51. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007). [CrossRef]
  52. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Ohberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008). [CrossRef]
  53. C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]
  54. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008). [CrossRef]
  55. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012). [CrossRef]
  56. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012). [CrossRef]
  57. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009). [CrossRef]
  58. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012). [CrossRef]
  59. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]
  60. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013). [CrossRef]
  61. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” arXiv.org, arXiv:1303.0056.
  62. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot spins in optical microcavities,” Opt. Express 19, 25685 (2011). [CrossRef]
  63. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of the electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  64. Y. B. Sheng and L. Zhou, “Efficient W-state entanglement concentration using quantum-dot and optical microcavities,” J. Opt. Soc. Am. B 30, 678–686 (2013). [CrossRef]
  65. Y. B. Sheng, L. Zhou, L. Wang, and S. M. Zhao, “Efficient entanglement concentration for quantum dot and optical microcavities systems,” Quant. Info. Proc. 12, 1885–1895 (2013). [CrossRef]
  66. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  67. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]
  68. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]
  69. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited