OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2271–2276

Electromagnetic surface waves at a metal 2D photonic crystal interface

J. A. Gaspar-Armenta and F. Villa-Villa  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2271-2276 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The conditions to observe and excite electromagnetic surface modes at the interface between a two-dimensional (2D) photonic crystal (PC) and bulk metal are studied. It is shown that these modes can exist in the region where bandgaps of the PC overlap with the region below the plasma frequency of a metal in the dispersion diagram in both polarizations. The dispersion relation of these electromagnetic surface modes is determined numerically by considering a system of a thin metallic layer in contact with a finite PC of some periods. The reflectance is computed by using the finite-difference time-domain (FDTD) method. With this method, it is shown that these modes can be excited and observed even under normal incidence from a vacuum. For the studied system, the cell in contact with the metallic layer must be truncated in order to observe the interface mode. It is shown that we can select the frequency of the mode inside the bandgaps by properly choosing the truncation parameter.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.0240) Optics at surfaces : Optics at surfaces
(240.6690) Optics at surfaces : Surface waves
(310.0310) Thin films : Thin films
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: April 26, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: June 27, 2013
Published: July 25, 2013

J. A. Gaspar-Armenta and F. Villa-Villa, "Electromagnetic surface waves at a metal 2D photonic crystal interface," J. Opt. Soc. Am. B 30, 2271-2276 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005). [CrossRef]
  2. A. Femius Koenderink and W. L. Vos, “Optical properties of real photonic crystals,” J. Opt. Soc. Am. B 22, 1075–1084 (2005). [CrossRef]
  3. L. Florescu, K. Busch, and S. John, “Semiclasical theory of lasing in photonic crystals,” J. Opt. Soc. Am. B 19, 2215–2223 (2002). [CrossRef]
  4. P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001). [CrossRef]
  5. J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. 279, 213–217 (2006). [CrossRef]
  6. T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006). [CrossRef]
  7. S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006). [CrossRef]
  8. M. Mengens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Light sources inside photonic crystals,” J. Opt. Soc. Am. B 16, 1403–1408 (1999). [CrossRef]
  9. F. Yuntuan, S. Haijin, and S. Tinggen, “New evidences of negative refraction in photonic crystals,” Opt. Mater. 28, 1156–1159 (2006). [CrossRef]
  10. B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Comm. 23, 1355–1364 (2005). [CrossRef]
  11. N. C. Panoiu, M. Bahl, and R. M. Osgood, “Optically tunable superprism effect in nonlinear photonic crystals,” Opt. Lett. 28, 2503–2505 (2003). [CrossRef]
  12. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003). [CrossRef]
  13. C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997). [CrossRef]
  14. V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008). [CrossRef]
  15. D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009). [CrossRef]
  16. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006). [CrossRef]
  17. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006). [CrossRef]
  18. M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002). [CrossRef]
  19. F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999). [CrossRef]
  20. J. A. Gaspar-Armenta and F. Villa, “Photonic surface-wave excitation: photonic crystal-metal interface,” J. Opt. Soc. Am. B 20, 2349–2354 (2003). [CrossRef]
  21. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008). [CrossRef]
  22. B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010). [CrossRef]
  23. B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011). [CrossRef]
  24. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011). [CrossRef]
  25. L. Zhengqi, H. Jinting, J. Chen, Z. Yan, C. Tang, Z. Chen, and P. Zhang, “Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal,” Opt. Express 20, 9215–9225 (2012). [CrossRef]
  26. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, “Photonic crystal sensor based on surface waves for thin film characterization,” Opt. Lett. 27, 646–648 (2002). [CrossRef]
  27. X. Chun-Hua, J. Hai-Tao, and C. Hong, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett. 36, 855–857 (2011). [CrossRef]
  28. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium,” IEEE Trans. Antennas Propag. 17, 585–589 (1966). [CrossRef]
  29. D. M. Sullivan, Electromagnetic Simulations Using the FDTD Method (IEEE, 2000).
  30. J. Manzanares-Martinez and J. A. Gaspar-Armenta, “Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique,” J. Electromagn. Waves Appl. 21, 2297–2310 (2007). [CrossRef]
  31. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited