OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2277–2285

Enhancement of geometric discord for the system of superconducting qubits and transfer of quantum information

Dong-Mei Wang, Hang-Shi Xu, Jing-Bo Xu, and You-Hong Yu  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2277-2285 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate how quantum measurements affect the dynamics of quantum correlations of the system which consists of two noninteracting superconducting qubits each locally coupling to its own data bus. It is shown that the geometric discord and entanglement between two superconducting qubits can be increased by applying a sequence of selective measurements. The optimal measurement time at which the quantum correlations achieve their maximal values is also analyzed. Moreover, we find that the selective measurements on the data buses can protect quantum information of two superconducting qubits and force information to flow back to the superconducting qubits from the data buses by a witness of the trace distance.

© 2013 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 19, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: July 10, 2013
Published: July 26, 2013

Dong-Mei Wang, Hang-Shi Xu, Jing-Bo Xu, and You-Hong Yu, "Enhancement of geometric discord for the system of superconducting qubits and transfer of quantum information," J. Opt. Soc. Am. B 30, 2277-2285 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, and J. J. Marzo, “Superconducting persistent-current qubit,” Phys. Rev. B 60, 15398–15413 (1999). [CrossRef]
  2. Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
  3. J. Q. You, J. S. Tsai, and F. Nori, “Scalable quantum computing with Josephson charge qubits,” Phys. Rev. Lett. 89, 197902 (2002). [CrossRef]
  4. T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941–944 (2003). [CrossRef]
  5. A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, “Entangled macroscopic quantum states in two superconducting qubits,” Science 300, 1548–1550 (2003). [CrossRef]
  6. A. Blais, A. M. van den Brink, and A. M. Zagoskin, “Tunable coupling of superconducting qubits,” Phys. Rev. Lett. 90, 127901 (2003). [CrossRef]
  7. A. M. Zagoskin, M. Grajcar, and A. N. Omelyanchouk, “Selective amplification of a quantum state,” Phys. Rev. A 70, 060301 (2004). [CrossRef]
  8. J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449, 443–447 (2007). [CrossRef]
  9. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008). [CrossRef]
  10. M. Y. Chen, Matisse W. Y. Tu, and W.-M. Zhang, “Entangling two superconducting LC coherent modes via a superconducting flux qubit,” Phys. Rev. B 80, 214538 (2009). [CrossRef]
  11. Y. Q. Zhang and J. B. Xu, “Entanglement control in a superconducting qubit system by an electromagnetic field,” Eur. Phys. J. D 63, 483–488 (2011). [CrossRef]
  12. Y.-X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, “Optical selection rules and phasedependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005). [CrossRef]
  13. J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba, and H. Takayanagi, “Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system,” Phys. Rev. Lett. 96, 127006 (2006). [CrossRef]
  14. J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003). [CrossRef]
  15. Y.-X. Liu, C. P. Sun, and F. Nori, “Scalable superconducting qubit circuits using dressed states,” Phys. Rev. A 74, 052321 (2006). [CrossRef]
  16. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  17. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002). [CrossRef]
  18. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008). [CrossRef]
  19. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008). [CrossRef]
  20. B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012). [CrossRef]
  21. H. P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009). [CrossRef]
  22. E. M. Laine, J. Piilo, and H. P. Breuer, “Witness for initial system-environment correlations in open-system dynamics,” Eurphys. Lett. 92, 60010 (2010). [CrossRef]
  23. A. Smirne, H.-P. Breuer, J. Piilo, and B. Vacchini, “Initial correlations in open-systems dynamics: the Jaynes-Cummings model,” Phys. Rev. A 82, 062114 (2010). [CrossRef]
  24. E.-M. Laine, J. Piilo, and H.-P. Breuer, “Measure for the non-Markovianity of quantum processes,” Phys. Rev. A 81, 062115 (2010). [CrossRef]
  25. B. Dakić, V. Vedral, and Č. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010). [CrossRef]
  26. T. Yu and J. H. Eberly, “Entanglement evolution in a non-Markovian environment,” Opt. Commun. 283, 676 (2010). [CrossRef]
  27. F. Altintas, “Geometric measure of quantum discord in non-Markovian environments,” Opt. Commun. 283, 5264 (2010). [CrossRef]
  28. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010). [CrossRef]
  29. P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse, and D. A. Lidar, “Control of decoherence: analysis and comparison of three different strategies,” Phys. Rev. A 71, 022302 (2005). [CrossRef]
  30. S. Maniscalco, F. Francica, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008). [CrossRef]
  31. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  32. J. G. Oliveira, R. Rossi, and M. C. Nemes, “Protecting, enhancing, and reviving entanglement,” Phys. Rev. A 78, 044301 (2008). [CrossRef]
  33. Y. Matsuzaki, S. Saito, K. Kakuyanagi, and K. Semba, “Quantum Zeno effect with a superconductin qubit,” Phys. Rev. B 82, 180518 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited