OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2286–2291

Behavior of plasmonic nanoparticle array in near- and far-field coupling regimes for transverse electric and transverse magnetic polarizations

Afsaneh Shahmansouri and Bizhan Rashidian  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2286-2291 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have previously reported the results of plasmonic behavior of an Au nanodisk array in the far-field coupling regime under oblique illumination with transverse electric polarization. In this paper, those results are studied in more detail. Here, results for transverse magnetic polarization are also presented and discussed. In addition to the far-field coupling regime, the results for the near-field coupling regime are also reported. Effects of different parameters, such as substrate thickness and array periodicity on the shape of plasmon spectra are discussed. It will be shown that in the far-field coupling regime, the diffractive grating orders can have a major role in the behavior of the structure.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: June 3, 2013
Manuscript Accepted: July 2, 2013
Published: July 29, 2013

Afsaneh Shahmansouri and Bizhan Rashidian, "Behavior of plasmonic nanoparticle array in near- and far-field coupling regimes for transverse electric and transverse magnetic polarizations," J. Opt. Soc. Am. B 30, 2286-2291 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006). [CrossRef]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  3. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010). [CrossRef]
  4. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011). [CrossRef]
  5. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17, 8669–8675 (2009). [CrossRef]
  6. J. Petschulat, D. Cialla, N. Janunts, C. Rockstuh, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Popp, A. Tünnermann, F. Lederer, and T. Pertsch, “Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering,” Opt. Express 18, 4184–4197 (2010). [CrossRef]
  7. B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011). [CrossRef]
  8. L. D. Tuyen, A. C. Liu, C. Huang, P. Tsai, J. H. Lin, C. Wu, L. Chau, T. S. Yang, L. Q. Minh, H. Kan, and C. C. Hsu, “Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals,” Opt. Express 20, 29266–29275 (2012). [CrossRef]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000). [CrossRef]
  10. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003). [CrossRef]
  11. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004). [CrossRef]
  12. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004). [CrossRef]
  13. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005). [CrossRef]
  14. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008). [CrossRef]
  15. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010). [CrossRef]
  16. A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20, 27941–27952 (2012). [CrossRef]
  17. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008). [CrossRef]
  18. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008). [CrossRef]
  19. V. Yannopapas and I. E. Psarobas, “Ordered arrays of metal nanostrings as broadband super absorbers,” J. Phys. Chem. C 116, 15599 (2012). [CrossRef]
  20. A. Shahmansouri and B. Rashidian, “Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: near- and far-field formulation,” J. Opt. Soc. Am. B 28, 2690–2700 (2011). [CrossRef]
  21. A. Shahmansouri and B. Rashidian, “GPU implementation of split-field finite-difference time-domain method for Drude–Lorentz dispersive media,” Prog. Electromagn. Res. 125, 55–77 (2012). [CrossRef]
  22. M. Meier and A. Wokaun, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985). [CrossRef]
  23. V. Yannopapas and N. Stefanou, “Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis,” Phys. Rev. B 69, 012408 (2004). [CrossRef]
  24. G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791–1802 (2005). [CrossRef]
  25. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009). [CrossRef]
  26. J. Zhang, L. Cai, W. Bai, and G. Song, “Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide,” Opt. Lett. 35, 3408–3410 (2010). [CrossRef]
  27. C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285, 4381–4386 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited