OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2292–2295

Impact of two-photon absorption on second-harmonic generation in CdTe as probed by wavelength-dependent Z-scan nonlinear spectroscopy

J. I. Jang, S. Park, D. J. Clark, F. O. Saouma, D. Lombardo, C. M. Harrison, and B. Shim  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2292-2295 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002292


View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a nonlinear optical (NLO) probe technique, wavelength-dependent Z-scan nonlinear spectroscopy (WDZNS), which can be utilized for assessing broadband NLO properties of materials. Unlike typical Z-scans, WDZNS can spectrally monitor the frequency-doubled output as a function of wavelength λ as well as input intensity I. Based on WDZNS we have investigated the strong impact of two-photon absorption (TPA) on second-harmonic generation in CdTe over a broad TPA range. This complicated NLO effect is characterized by the λ-dependent TPA coefficient, which is consistent with a simple two-band model. The relative second-order NLO dispersion derived from WDZNS is also consistent with previous measurements.

© 2013 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 12, 2013
Revised Manuscript: July 2, 2013
Manuscript Accepted: July 2, 2013
Published: July 29, 2013

Citation
J. I. Jang, S. Park, D. J. Clark, F. O. Saouma, D. Lombardo, C. M. Harrison, and B. Shim, "Impact of two-photon absorption on second-harmonic generation in CdTe as probed by wavelength-dependent Z-scan nonlinear spectroscopy," J. Opt. Soc. Am. B 30, 2292-2295 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981). [CrossRef]
  2. H. M. Gibbs, Optical Bistability (Academic, 1985).
  3. G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000). [CrossRef]
  4. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005), and references therein.
  5. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962). [CrossRef]
  6. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968). [CrossRef]
  7. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  8. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999). [CrossRef]
  9. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006). [CrossRef]
  10. M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006). [CrossRef]
  11. D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008). [CrossRef]
  12. V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers: problems and prospects,” J. Opt. Technol. 77, 6–17 (2010). [CrossRef]
  13. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007). [CrossRef]
  14. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12, 3820–3826 (2004). [CrossRef]
  15. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13, 3594–3599 (2005). [CrossRef]
  16. M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25, 159–165 (2008). [CrossRef]
  17. M. J. Soileau, W. E. Williams, E. W. Van Stryland, and M. A. Woodall, “Laser-induced damage measurements in CdTe and other II-VI materials,” Appl. Opt. 21, 4059–4062 (1982). [CrossRef]
  18. J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1975). [CrossRef]
  19. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985). [CrossRef]
  20. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992). [CrossRef]
  21. J. P. Wolfe, J. L. Lin, and D. W. Snoke, “Bose-Einstein condensation of a nearly ideal gas: excitons in Cu2O,” in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari, eds. (Cambridge University, 1995), pp. 281–329.
  22. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993). [CrossRef]
  23. S. Mani, J. I. Jang, and J. B. Ketterson, “Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique,” Phys. Rev. B 82, 113203 (2010). [CrossRef]
  24. C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012). [CrossRef]
  25. Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 1984).
  26. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
  27. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991). [CrossRef]
  28. K. E. O’Hara, J. R. Gullingsrud, and J. P. Wolfe, “Auger decay of excitons in Cu2O,” Phys. Rev. B 60, 10872–10885 (1999). [CrossRef]
  29. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005). [CrossRef]
  30. J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited