OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2306–2317

Static and dynamic characteristics of integrated semiconductor optical parametric oscillators

Nima Zareian and Amr S. Helmy  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2306-2317 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002306


View Full Text Article

Enhanced HTML    Acrobat PDF (1474 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The static and dynamic properties of semiconductor optical parametric oscillators (SOPOs) are studied by merging the rate equations of the diode pump laser with those of the OPO while taking into account the phase and, hence, chirp performance. The static analysis of the SOPO shows two stable regimes of operation, namely, an efficient and an inefficient regime akin to the case for conventional intracavity OPO. The large signal dynamic properties of the SOPO are studied in the two static operating regimes. The study shows that there exists enormous negative and positive frequency chirp in the signal and idler in the order of a few terahertz upon large signal modulation. These characteristics are explained through the well-known properties of the nonlinear gain medium of the OPO. The limitations on using these devices in a directly modulated fashion are discussed. Such limitations are found to be determined largely by the SOPO rise time in certain bias conditions.

© 2013 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4975) Nonlinear optics : Parametric processes
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 6, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 4, 2013
Published: July 31, 2013

Citation
Nima Zareian and Amr S. Helmy, "Static and dynamic characteristics of integrated semiconductor optical parametric oscillators," J. Opt. Soc. Am. B 30, 2306-2317 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2306


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy,” Opt. Lett. 24, 397–399 (1999). [CrossRef]
  2. D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992). [CrossRef]
  3. T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242–244 (1974). [CrossRef]
  4. A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007). [CrossRef]
  5. J. Gao, F. Cui, C. Xue, C. Xie, and P. Kunchi, “Generation and application of twin beams from an optical parametric oscillator including an α-cut KTP crystal,” Opt. Lett. 23, 870–872 (1998). [CrossRef]
  6. A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766 (1999). [CrossRef]
  7. M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 4, 491–502 (1968). [CrossRef]
  8. V. I. Emel’yanov, “Phase fluctuations in a parametric light source operating inside a laser resonator,” Sov. J. Quantum Electron. 2, 524 (1973). [CrossRef]
  9. G. Turnbull, M. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66, 701–710 (1998). [CrossRef]
  10. T. Debuisschert, J. Raffy, J.-P. Pocholle, and M. Papuchon, “Intracavity optical parametric oscillator: study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B 13, 1569–1587 (1996). [CrossRef]
  11. Y. Yashkir and H. M. van Driel, “Passively Q-switched 1.57 um intracavity optical parametric oscillator,” Appl. Opt. 38, 2554–2559 (1999). [CrossRef]
  12. D. J. M. Stothard and M. H. Dunn, “Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators,” Opt. Express 18, 1336–1348 (2010). [CrossRef]
  13. J. B. Khurgin, E. Rosencher, and Y. J. Ding, “Analysis of all-semiconductor intracavity optical parametric oscillators,” J. Opt. Soc. Am. B 15, 1726–1730 (1998). [CrossRef]
  14. Y. Ding, J. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995). [CrossRef]
  15. P. Abolghasem and A. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009). [CrossRef]
  16. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009). [CrossRef]
  17. B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011—Laser Applications to Photonic Applications (OSA/IEEE, 2011), p. PDPA3.
  18. B. J. Bijlani and A. S. Helmy, “Design methodology for efficient frequency conversion in Bragg reflection lasers,” J. Opt. Soc. Am. B 29, 2484–2492 (2012). [CrossRef]
  19. R. G. Smith and J. V. Parker, “Experimental observation of and comments on optical parametric oscillation internal to the laser cavity,” J. Appl. Phys. 41, 3401–3408 (1970). [CrossRef]
  20. J. Cartledge, “Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator,” J. Lightwave Technol. 8, 716–721 (1990). [CrossRef]
  21. T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991). [CrossRef]
  22. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Kluwer Academic, 1993).
  23. S. W. C. Larry, A. Coldren, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
  24. J. R. Dormand and P. J. Prince, “A family of embedded Runge–Kutta formulae,” J. Comput. Appl. Math. 6, 19–26 (1980). [CrossRef]
  25. J. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators,” IEEE J. Quantum Electron. 8, 433–440 (1972). [CrossRef]
  26. D. C. Paul and N. Butcher, The Elements of Nonlinear Optics (Cambridge University, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited