OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2326–2332

Numerical modeling and determination of limiting powers for volume Bragg gratings used in lasers for spectral control

Staffan Tjörnhammar, Valdas Pasiskevicius, and Fredrik Laurell  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2326-2332 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002326


View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a model to investigate the thermal limitations of volume Bragg gratings (VBGs) used in lasers for spectral control. Also presented are the limiting optical powers, to which intracavity VBGs of different length could be subjected, before the laser operation rapidly deteriorates. The results revealed that the power limit of a VBG-locked laser is highly dependent on the length of the employed VBG. Furthermore, the power limit expressed in incident power related linearly to the radius of the laser beam irradiating the VBG.

© 2013 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.7330) Holography : Volume gratings
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 25, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 12, 2013
Published: August 1, 2013

Citation
Staffan Tjörnhammar, Valdas Pasiskevicius, and Fredrik Laurell, "Numerical modeling and determination of limiting powers for volume Bragg gratings used in lasers for spectral control," J. Opt. Soc. Am. B 30, 2326-2332 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999). [CrossRef]
  2. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Lett. 29, 1891–1893 (2004). [CrossRef]
  3. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,” Opt. Lett. 31, 1663–1665 (2006). [CrossRef]
  4. T.-y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31, 229–231 (2006). [CrossRef]
  5. P. Jelger and F. Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express 15, 11336–11340 (2007). [CrossRef]
  6. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30, 2281–2283 (2005). [CrossRef]
  7. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507–9512 (2008). [CrossRef]
  8. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er, Yb fiber laser using a volume Bragg grating,” Opt. Lett. 33, 1204–1206 (2008). [CrossRef]
  9. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009). [CrossRef]
  10. K.-H. Liao, M.-Y. Cheng, E. Flecher, V. I. Smirnov, L. B. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15, 4876–4882 (2007). [CrossRef]
  11. H. Shu and M. Bass, “Modeling the reflection of a laser beam by a deformed highly reflective volume Bragg grating,” Appl. Opt. 46, 2930–2938 (2007). [CrossRef]
  12. H. Shu, S. Mokhov, B. Y. Zeldovich, and M. Bass, “More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method,” Appl. Opt. 48, 22–27 (2009). [CrossRef]
  13. H. Shu, “Split step solution in the iteration of the beam propagation method for analyzing Bragg gratings,” Appl. Opt. 48, 4794–4800 (2009). [CrossRef]
  14. T. Waritanant and T.-Y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. 47, 390–397 (2011). [CrossRef]
  15. S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings used in lasers for spectral control,” J. Opt. Soc. Am. B 30, 1402–1409 (2013). [CrossRef]
  16. C. Mitsas and D. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678–1683 (1995). [CrossRef]
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” in The Bell System Technical Journal, Vol. 48 (American Telephone and Telegraph Company, 1969), pp. 2909–2947.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited