OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2377–2386

High-repetition-rate pulse generation and compression in dispersion decreasing fibers

Dmitry A. Korobko, Oleg G. Okhotnikov, and Igor O. Zolotovskii  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2377-2386 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical pulse generation and compression have been numerically studied in anomalous dispersion decreasing fibers. We show that evolution of modulation instability (MI) observed with chirped wave packets in tapered fibers produces the mechanism for generation of ultrashort pulses with high repetition rates. The role of MI and Raman self-scattering has been also discussed. The simulations show that pulse chirping enhances self-Raman scattering at early stages of pulse propagation and improves compression of the generated pulses. It is also shown that the presence of amplitude and frequency modulation of the seed wave provide essential impact on the pulse train formation. The new method for increasing the pulse train repetition rate through frequency modulation of the seed wave has been proposed.

© 2013 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Ultrafast Optics

Original Manuscript: May 28, 2013
Manuscript Accepted: July 14, 2013
Published: August 15, 2013

Dmitry A. Korobko, Oleg G. Okhotnikov, and Igor O. Zolotovskii, "High-repetition-rate pulse generation and compression in dispersion decreasing fibers," J. Opt. Soc. Am. B 30, 2377-2386 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. I. Barenblatt, Scaling, Self-similarity and Intermediate Asymptotics: Dimensional Analysis (Cambridge University, 1996).
  2. J. M. Dudley, C. Finot, D. Richardson, and G. Millot, “Self-similarity and scaling phenomena in nonlinear ultrafast optics,” Nat. Phys. 3, 597 (2007). [CrossRef]
  3. S. A. Ponomarenko and G. P. Agrawal, “Optical similaritons in nonlinear waveguides,” Opt. Lett. 32, 1659–1661 (2007). [CrossRef]
  4. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Springer, 2007).
  5. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012). [CrossRef]
  6. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 71, 056619 (2005). [CrossRef]
  7. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000). [CrossRef]
  8. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 85824–85835 (2007).
  9. S. Wabnitz and C. Finot, “Theory of parabolic pulse propagation in nonlinear dispersion decreasing optical fiber amplifiers, J. Opt. Soc. Am. B 25, 614–621 (2008). [CrossRef]
  10. I. O. Zolotovskii, D. I. Sementsov, A. K. Senatorov, A. A. Sysolyatin, and M. S. Yavtushenko, “Dynamics of similariton pulses in length-inhomogeneous active fibres,” Quantum Electron. 40, 229 (2010). [CrossRef]
  11. T. Hirooka and M. Nakazava, “Parabolic pulse generation by use of a dispersion-decreasing fibre with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004). [CrossRef]
  12. J. D. Moores, “Nonlinear compression of chirped solitary waves with and without phase modulation,” Opt. Lett. 21, 555–557 (1996). [CrossRef]
  13. V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502–4505 (2000). [CrossRef]
  14. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Comment on exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 92, 199401 (2004). [CrossRef]
  15. I. O. Zolotovskii and D. I. Sementsov, “Formation of the amplification regime of quasi-soliton pulses in waveguides with longitudinally inhomogeneous cross sections, Opt. Spectrosc. 102, 594–598 (2007). [CrossRef]
  16. Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009). [CrossRef]
  17. A. V. Zhukov, I. O. Zolotovskii, O. G. Okhotnikov, D. I. Sementsov, A. A. Sysolyatin, and I. O. Yavtushenko, “Dynamics of frequency-modulated soliton-like pulses in a longitudinally inhomogeneous active optical waveguide,” Opt. Spectrosc. 113, 75–80 (2012). [CrossRef]
  18. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991). [CrossRef]
  19. N. Akhmediev, “Déjà vu in optics,” Nature 413, 267–268 (2001). [CrossRef]
  20. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986). [CrossRef]
  21. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers,” Opt. Lett. 14, 1008–1010 (1989). [CrossRef]
  22. J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001). [CrossRef]
  23. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003). [CrossRef]
  24. W. Xu, S. Zhang, W. Chen, A. Luo, and S. Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001). [CrossRef]
  25. K. Nithyanandan, R. Vasantha, Jayakantha Raja, and K. Porsezian, “Theoretical investigation of modulational instability in semiconductor doped dispersion decreasing fiber and its cutting edge over the existing fiber systems,” J. Opt. Soc. Am. B 30, 178–187 (2013). [CrossRef]
  26. S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114 Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion decreasing optical fiber,” Appl. Phys. Lett. 63, 293–295 (1993). [CrossRef]
  27. E. A. Swanson and S. R. Chinn, “23 GHz and 123 GHz soliton pulse generation using two CW lasers and standard single-mode fiber,” IEEE Photon. Technol. Lett. 6, 796 (1994). [CrossRef]
  28. G. Agrawal, “Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,” Opt. Lett. 15, 224–226 (1990). [CrossRef]
  29. U. G. Akhmetshin, V. A. Bogatyrev, A. K. Senatorov, A. A. Sysolyatin, and M. G. Shalygin, “New single-mode fibres with the flat spectral dependence of the chromatic dispersion varying over the fibre length,” Quantum Electron. 33, 265–267 (2003). [CrossRef]
  30. A. A. Sysoliatin, U. G. Akhmetshin, S. V. Muraviev, and A. V. Kirsanov, “Stable continuum generation in fibers with varying dispersion,” Laser Phys. 15, 1288–1291 (2005).
  31. A. A. Sysolyatin and D. A. Nolan, “Optical signal processing in dispersion varying fibres,” J. Nonlinear Opt. Phys. Mater. 16, 171–184 (2007). [CrossRef]
  32. I. O. Zolotovskii, D. A. Korobko, O. G. Okhotnikov, A. A. Sysolyatin, and A. A. Fotiadi, “Dynamics of frequency-modulated soliton-like pulses in a longitudinally inhomogeneous, anomalous group velocity dispersion fibre amplifier,” Quantum Electron. 42, 828–833 (2012). [CrossRef]
  33. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation,” Opt. Express 17, 21497–21508 (2009). [CrossRef]
  34. A. Komarov, A. Haboucha, and F. Sanchez, “Ultrahigh-repetition-rate bound-soliton harmonic passive mode-locked fiber lasers,” Opt. Lett. 33, 2254–2256 (2008). [CrossRef]
  35. E. J. Saarinen, A. Rantamäki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett. 48, 1355–1357 (2012). [CrossRef]
  36. P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M. Prokhorov, “Generation of a high repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self-scattering effects,” Opt. Lett. 15, 1365–1367 (1990). [CrossRef]
  37. S. A. Ponomarenko and G. P. Agrawal, “Nonlinear interaction of two or more similaritons in loss- and dispersion-managed fibers,” J. Opt. Soc. Am. B 25, 983–989 (2008). [CrossRef]
  38. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007). [CrossRef]
  39. M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. J. Phys. Special Top. 185, 135–144 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited