OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2393–2400

Entanglement generation with coherent states using cross-Kerr nonlinearity

Si Yu Song, Shuhao Wang, Guo Fu Xu, and Gui Lu Long  »View Author Affiliations


JOSA B, Vol. 30, Issue 9, pp. 2393-2400 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002393


View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose methods for generating Bell-type entangled coherent states for quantum information processing. The protocols are completed using linear optical elements, single-photon detectors, and cross-Kerr nonlinearity. We investigate the decoherence effect on our protocols; photon loss is found to affect only the probability, not the fidelity, of the generation process. The entanglement of the generated entangled states is also analyzed using concurrence. Finally, the feasibility of our scheme is discussed using the continuous-time cross-phase modulation model. In the weak nonlinearity region, on the condition that θ2|αp|21, θ1, and σ21, our scheme is applicable theoretically.

© 2013 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 25, 2013
Manuscript Accepted: July 18, 2013
Published: August 16, 2013

Citation
Si Yu Song, Shuhao Wang, Guo Fu Xu, and Gui Lu Long, "Entanglement generation with coherent states using cross-Kerr nonlinearity," J. Opt. Soc. Am. B 30, 2393-2400 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-9-2393


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsenand and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. Y. Aharonov and L. Susskind, “Charge superselection rule,” Phys. Rev. 155, 1428–1431 (1967). [CrossRef]
  3. B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992). [CrossRef]
  4. P. P. Munhoz, J. A. Roversi, A. Vidiella-Barranco, and F. L. Semiao, “Bipartite quantum channels using multipartite cluster-type entangled coherent states,” Phys. Rev. A 81, 042305 (2010). [CrossRef]
  5. S. J. van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001). [CrossRef]
  6. X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001). [CrossRef]
  7. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007). [CrossRef]
  8. N. B. An, “Teleportation of coherent-state superpositions within a network,” Phys. Rev. A 68, 022321 (2003). [CrossRef]
  9. N. B. An, “Optimal processing of quantum information via W-type entangled coherent states,” Phys. Rev. A 69, 022315 (2004). [CrossRef]
  10. P. T. Cochrane, G. J. Milburn, and W. J. Munro, “Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping,” Phys. Rev. A 59, 2631–2634 (1999). [CrossRef]
  11. H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A 65, 042305 (2002). [CrossRef]
  12. H. Jeong and N. B. An, “Greenberger-Horne- Zeilinger-type and W-type entangled coherent states: generation and Bell-type inequality tests without photon counting,” Phys. Rev. A 74, 022104 (2006). [CrossRef]
  13. J. Clausen, L. Knöll, and D.-G. Welsch, “Lossy purification and detection of entangled coherent states,” Phys. Rev. A 66, 062303 (2002). [CrossRef]
  14. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  15. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  16. C. Wang, Y. Zhang, and G. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
  17. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  18. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
  19. Y. B. Sheng and L. Zhou, “Quantum entanglement concentration based on nonlinear optics for quantum communications,” Entropy 15, 1776–1820 (2013). [CrossRef]
  20. S. Glancy, H. M. Vasconcelos, and T. C. Ralph, “Transmission of optical coherent-state qubits,” Phys. Rev. A 70, 022317 (2004). [CrossRef]
  21. O. Hirota and S. J. van Enk, “Entangled nonorthogonal states and their decoherence properties,” arXiv:quant-ph/0101096 (2001).
  22. H. Jeong, M. S. Kim, and J. Lee, “Quantum information processing for a coherent superposition state via a mixed entangled coherent channel,” Phys. Rev. A 64, 052308 (2001). [CrossRef]
  23. W. J. Munro, G. J. Milburn, and B. C. Sanders, “Entangled coherent-state qubits in an ion trap,” Phys. Rev. A 62, 052108 (2000). [CrossRef]
  24. A. D. Armour, M. P. Blencowe, and K. C. Schwab, “Quantum dynamics of a cooper-pair box coupled to a micromechanical resonator,” Phys. Rev. Lett. 88, 148301 (2002). [CrossRef]
  25. X. G. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003). [CrossRef]
  26. E. Solano, G. S. Agarwal, and H. Walther, “Strong driving- assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003). [CrossRef]
  27. L. M. Kuang and L. Zhou, “Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency,” Phys. Rev. A 68, 043606 (2003). [CrossRef]
  28. L. M. Kuang, Z. B. Chen, and J. W. Pan, “Generation of entangled coherent states for distant Bose–Einstein condensates via electromagnetically induced transparency,” Phys. Rev. A 76, 052324 (2007). [CrossRef]
  29. M.-Y. Chen, M. W. Y. Tu, and W.-M. Zhang, “Entangling two superconducting LC coherent modes via a superconducting flux qubit,” Phys. Rev. B 80, 214538 (2009). [CrossRef]
  30. Y. Guo and L. M. Kuang, “Near-deterministic generation of four-mode W-type entangled coherent states,” J. Phys. B 40, 3309–3318 (2007). [CrossRef]
  31. N. B. An and J. Kim, “Cluster-type entangled coherent states: generation and application,” Phys. Rev. A 80, 042316 (2009). [CrossRef]
  32. H. Jeong, “Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation,” Phys. Rev. A 72, 034305 (2005). [CrossRef]
  33. H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004). [CrossRef]
  34. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical Controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  35. W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005). [CrossRef]
  36. A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpositions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004). [CrossRef]
  37. B. Wang and L. M. Duan, “Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005). [CrossRef]
  38. B. He, M. Nadeem, and J. A. Bergou, “Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity,” Phys. Rev. A 79, 035802 (2009). [CrossRef]
  39. S. J. van Enk, “Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states,” Phys. Rev. Lett. 91, 017902 (2003). [CrossRef]
  40. B. He, Y. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009). [CrossRef]
  41. B. He, Y. Ren, and J. A. Bergou, “Universal entangler with photon pairs in arbitrary states,” J. Phys. B 43, 025502 (2010). [CrossRef]
  42. C. C. Gerry, “Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium,” Phys. Rev. A 59, 4095–4098 (1999). [CrossRef]
  43. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
  44. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009). [CrossRef]
  45. F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
  46. C. Wang, Y. S. Li, and L. Hao, “Optical implementation of quantum random walks using weak cross-Kerr media,” Chinese Sci. Bull. 56, 2088–2091 (2011). [CrossRef]
  47. V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012). [CrossRef]
  48. S. J. D. Phoenix, “Wave-packet evolution in the damped oscillator,” Phys. Rev. A 41, 5132–5138 (1990). [CrossRef]
  49. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323 (1994). [CrossRef]
  50. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  51. H. Weinfurter and M. Zukowski, “Four-photon entanglement from down-conversion,” Phys. Rev. A 64, 010102(R) (2001). [CrossRef]
  52. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008). [CrossRef]
  53. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  54. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006). [CrossRef]
  55. J. H. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16 (2007). [CrossRef]
  56. J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010). [CrossRef]
  57. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef]
  58. M. Siomau, A. A. Kamli, S. A. Moiseev, and B. C. Sanders, “Entanglement creation with negative index metamaterials,” Phys. Rev. A 85, 050303(R) (2012). [CrossRef]
  59. S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  60. D. Braje, V. Balić, G. Yin, and S. Harris, “Low-light-level non-linear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003). [CrossRef]
  61. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995). [CrossRef]
  62. P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum nondemolition measurements in optics,” Nature 396, 537–542 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited