OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2401–2408

Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics

H. M. Nguyen, O. Seitz, Yu. N. Gartstein, Y. J. Chabal, and A. V. Malko  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2401-2408 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3592 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use time-resolved photoluminescence (PL) kinetics and PL intensity measurements to study the decay of photoexcitations in colloidal CdSe/ZnS nanocrystals grafted on SiO2Si substrates with a wide range of the SiO2 spacer layer thicknesses. The salient features of experimental observations are found to be in good agreement with theoretical expectations within the framework of modification of spontaneous decay of electric-dipole excitons by their environment. Analysis of the experimental data reveals that energy transfer (ET) from nanocrystals into Si is a major enabler of substantial variations in decay rates, where we quantitatively distinguish contributions from nonradiative and radiative ET channels. We demonstrate that time-resolved PL kinetics provides a more direct assessment of ET, while PL intensity measurements are also affected by the specifics of the generation and emission processes.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:

Original Manuscript: June 3, 2013
Manuscript Accepted: July 26, 2013
Published: August 16, 2013

H. M. Nguyen, O. Seitz, Yu. N. Gartstein, Y. J. Chabal, and A. V. Malko, "Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics," J. Opt. Soc. Am. B 30, 2401-2408 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  2. Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011). [CrossRef]
  3. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7, 47–57 (2006). [CrossRef]
  4. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, 2004).
  5. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  6. R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003). [CrossRef]
  7. V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011). [CrossRef]
  8. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009). [CrossRef]
  9. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009). [CrossRef]
  10. H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011). [CrossRef]
  11. H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012). [CrossRef]
  12. M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013). [CrossRef]
  13. L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013). [CrossRef]
  14. D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979). [CrossRef]
  15. A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009). [CrossRef]
  16. M. Stavola, D. L. Dexter, and R. S. Knox, “Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985). [CrossRef]
  17. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.
  18. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).
  19. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983). [CrossRef]
  20. A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987). [CrossRef]
  21. L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004). [CrossRef]
  22. O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009). [CrossRef]
  23. D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010). [CrossRef]
  24. O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011). [CrossRef]
  25. A. Sommerfeld, “Über die ausbreitung der wellen inder drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).
  26. A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).
  27. D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985). [CrossRef]
  28. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979). [CrossRef]
  29. L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006). [CrossRef]
  30. L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006). [CrossRef]
  31. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited