OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2420–2426

Molecule fluorescence modified by a slit-based nanoantenna with dual gratings

Hongming Shen, Guowei Lu, Tianyue Zhang, Jie Liu, Yingbo He, Yuwei Wang, and Qihuang Gong  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2420-2426 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (708 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, molecule fluorescence modified by slit-based nanoantennas surrounded with metal gratings was investigated by employing the finite-difference time-domain method. We quantified the relative contribution of excitation and emission gains to the total fluorescence enhancement. The simulation results show that the asymmetric dual-grating (DG) antenna provides an efficient way to control the local excitation enhancement, the collection efficiency, and the quantum efficiency separately for bright emission and beaming light. We also investigated the dependence of fluorescence enhancement on the geometric parameters of the antenna, such as the nano-slit width and number of grooves. The asymmetric DG structure greatly improves the flexibility of the nanostructure design to further optimize the plasmonic enhancement effect and provides a promising route to manipulate single-molecule fluorescence emission.

© 2013 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(050.0050) Diffraction and gratings : Diffraction and gratings
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Diffraction and Gratings

Original Manuscript: March 5, 2013
Revised Manuscript: July 14, 2013
Manuscript Accepted: July 25, 2013
Published: August 20, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Hongming Shen, Guowei Lu, Tianyue Zhang, Jie Liu, Yingbo He, Yuwei Wang, and Qihuang Gong, "Molecule fluorescence modified by a slit-based nanoantenna with dual gratings," J. Opt. Soc. Am. B 30, 2420-2426 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006). [CrossRef]
  2. B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010). [CrossRef]
  3. X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010). [CrossRef]
  4. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009). [CrossRef]
  5. F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012). [CrossRef]
  6. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20, 8100–8116 (2012). [CrossRef]
  7. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express 20, 19474–19483 (2012). [CrossRef]
  8. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  9. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003). [CrossRef]
  10. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  11. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010). [CrossRef]
  12. M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012). [CrossRef]
  13. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008). [CrossRef]
  14. H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012). [CrossRef]
  15. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007). [CrossRef]
  16. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef]
  17. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef]
  18. X. Chen, S. Gotzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36, 3545–3547 (2011). [CrossRef]
  19. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011). [CrossRef]
  20. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  21. E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010). [CrossRef]
  22. G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Al, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011). [CrossRef]
  23. L. Guangyuan, X. Feng, L. Kun, K. Alameh, and X. Anshi, “Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations,” J. Lightwave Technol. 30, 2405–2414 (2012). [CrossRef]
  24. C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006). [CrossRef]
  25. H. Caglayan, I. Bulu, and E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B 23, 419–422 (2006). [CrossRef]
  26. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011). [CrossRef]
  27. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011). [CrossRef]
  28. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011). [CrossRef]
  29. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011). [CrossRef]
  30. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35, 2597–2599 (2010). [CrossRef]
  31. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostr. Fundam. Appl. 1, 55–62 (2003). [CrossRef]
  32. J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25, 1356–1361 (2008). [CrossRef]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  34. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  35. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]
  36. C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005). [CrossRef]
  37. K. C. Y. Huang, Y. C. Jun, M. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19, 19084–19092 (2011). [CrossRef]
  38. C. Li, Y. Zhou, H. Wang, and F. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010). [CrossRef]
  39. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef]
  40. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13, 7760–7771 (2005). [CrossRef]
  41. E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured Surfaces as Optical Metamaterials, A. Maradudin, ed. (Cambridge, 2011), Chap. 1, pp. 1–27.
  42. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001). [CrossRef]
  43. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  44. S. Kim, S. Kim, and Y. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006). [CrossRef]
  45. V. V. Klimov, “Spontaneous emission of an atom placed near the aperture of a scanning microscope,” JETP Lett. 78, 471–475 (2003). [CrossRef]
  46. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009). [CrossRef]
  47. G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. USA 107, 9043–9048 (2010). [CrossRef]
  48. J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited