OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2427–2435

Orientation dependent coherent anti-Stokes Raman scattering of cylindrical microparticle with focused lasers

C. H. Raymond Ooi, W.-L. Ho, and P. Seow  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2427-2435 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (760 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a semi-analytical and semi-classical theory for nonlinear scattering of coherent anti-Stokes Raman scattering (CARS) signal from a cylindrical microparticle by paraxial focused laser beams. We study the effects of radius and length of the microparticle, as well as the orientation on the angular distributions of the CARS signal. The waist of the laser beam is found to have a significant effect on the angular distribution. The combination of Gaussian laser beams and cylindrical geometry yields analytical expressions for the orientation factor and the CARS electric field, which permit convenient and efficient computation of the scattering signal versus various physical parameters.

© 2013 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.5650) Nonlinear optics : Raman effect
(290.5910) Scattering : Scattering, stimulated Raman
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

ToC Category:

Original Manuscript: April 23, 2013
Revised Manuscript: July 10, 2013
Manuscript Accepted: July 11, 2013
Published: August 20, 2013

C. H. Raymond Ooi, W.-L. Ho, and P. Seow, "Orientation dependent coherent anti-Stokes Raman scattering of cylindrical microparticle with focused lasers," J. Opt. Soc. Am. B 30, 2427-2435 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007). [CrossRef]
  2. W. Demtroder, Molecular Physics: Theoretical Principles and Experimental Methods (Wiley-VCH, 2005).
  3. H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer-Verlag, 1995).
  4. P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009). [CrossRef]
  5. S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. USA 107, 4825–4829 (2010). [CrossRef]
  6. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002). [CrossRef]
  7. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008). [CrossRef]
  8. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002). [CrossRef]
  9. G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007). [CrossRef]
  10. H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).
  11. V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010). [CrossRef]
  12. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008). [CrossRef]
  13. N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006). [CrossRef]
  14. D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008). [CrossRef]
  15. A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008). [CrossRef]
  16. A. Portnov, I. Bar, and S. Rosenwaks, “Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering,” Appl. Phys. B 98, 529–535 (2010).
  17. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011). [CrossRef]
  18. V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004). [CrossRef]
  19. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002). [CrossRef]
  20. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001). [CrossRef]
  21. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007). [CrossRef]
  22. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef]
  23. V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005). [CrossRef]
  24. G. Petrov, V. Yakovlev, A. Sokolov, and M. Scully, “Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy,” Opt. Express 13, 9537–9542 (2005). [CrossRef]
  25. D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005). [CrossRef]
  26. C. H. Raymond Ooi, “Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum,” J. Raman Spectrosc. 40, 714–725 (2009). [CrossRef]
  27. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011). [CrossRef]
  28. C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005). [CrossRef]
  29. C. H. Raymond Ooi, “Near-field and particle size effects in coherent Raman scattering,” Prog. Electromagn. Res. 117, 479–494 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited