OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2436–2442

Study of the effect of repump laser on atomic line filter

Ayan Ray, Md. Sabir Ali, and Alok Chakrabarti  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2436-2442 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The improvement in the performance of an atomic line filter (ALF) under the action of a repump laser is reported in the current experimental work. We address the issue of repumping by including an additional laser coupling the 5S1/2(F=1)5P3/2(F=2,1,0) hyperfine levels whereas the optical filter action is exhibited through a pump–probe laser-induced excited state absorption {5S1/2(F=2)5P3/2(F=3)5D3/2(F=3)} of the Rb87 atom. It is found that the application of the repump mechanism considerably influences the characterizing parameters (i.e., transmittance and width) of the ALF. To optimize the performance of the ALF, it is required to carefully choose the detuning and intensity of the repump laser for a fixed set of pump–probe combination. For this purpose, the effect of systematic change in detuning and intensity of the repump laser on the ALF signal is studied in detail. For example, it is experimentally found that ALF considerably benefits (30%) in transmittance from selective repumping of atoms. It is to be noted that, unlike earlier reports, where the frequency scale of the filter is calibrated with Faby–Perot etalons of comparatively larger free spectral range, the marking is done here with the help of double resonance optical pumping (DROP) signals. The DROP signals, which originate from two-photon coupling within the 5S5P5D hyperfine domain, also act as an indicator of the existing “Radiation Trapping” process in the cascade medium. The current study may help in improving the performance of narrow-bandwidth ALF, which is useful for free space optical communication systems and laser spectroscopy.

© 2013 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(120.2440) Instrumentation, measurement, and metrology : Filters
(260.1440) Physical optics : Birefringence
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Atomic and Molecular Physics

Original Manuscript: June 3, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: July 30, 2013
Published: August 20, 2013

Ayan Ray, Md. Sabir Ali, and Alok Chakrabarti, "Study of the effect of repump laser on atomic line filter," J. Opt. Soc. Am. B 30, 2436-2442 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Vol. XXXV of Progress in Optics (Elsevier, 1996), p. 258.
  2. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef]
  3. A. M. Akulshin, S. Barriero, and A. Lezamo, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998). [CrossRef]
  4. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001). [CrossRef]
  5. S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004). [CrossRef]
  6. M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001). [CrossRef]
  7. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995). [CrossRef]
  8. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996). [CrossRef]
  9. C. Fricke-Begeman, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002). [CrossRef]
  10. J. Höffner and C. Fricke-Begeman, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30, 890–892 (2005). [CrossRef]
  11. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007). [CrossRef]
  12. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008). [CrossRef]
  13. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019–1021 (1993). [CrossRef]
  14. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Alloca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995). [CrossRef]
  15. L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998). [CrossRef]
  16. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, Y. Guangning, P. R. Herczfeld, and D. M. Alloca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995). [CrossRef]
  17. L. D. Turner, V. Karagnov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500–502 (2002). [CrossRef]
  18. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theory and experiment for atomic optical filter based on optical anisotropy in rubidium,” Opt. Commun. 282, 4548–4551 (2009). [CrossRef]
  19. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009). [CrossRef]
  20. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37, 4059–4061 (2012). [CrossRef]
  21. C. Cohen-Tannoudji and A. Kastler, “Optical pumping,” Prog. Opt. 5, 1–81 (1966). [CrossRef]
  22. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009). [CrossRef]
  23. S. Liu and Y. Zhang, “Incoherent pump assisted atomic filter based on laser-induced optical anisotropy,” Appl. Opt. 51, 7183–7187 (2012). [CrossRef]
  24. H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of Rb87 atoms,” J. Phys. B 44, 055004 (2011). [CrossRef]
  25. A. Ray, Md. S. Ali, and A. Chakrabarti, “Optical switching in a Ξ system: a comparative study on DROP and EIT,” Eur. Phys. J. D 67, 78 (2013). [CrossRef]
  26. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef]
  27. B. W. Shore, “Coherent manipulation of atoms using laser light,” Act. Phys. Slov. 58, 243–486 (2008). [CrossRef]
  28. D. A. Steck, “Rubidium 87 D Line Data,” http://steck.us/alkalidata/rubidium87numbers.1.6.pdf .
  29. M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004). [CrossRef]
  30. W. Demtröder, Laser Spectroscopy. Basic Concepts and Instrumentation, 3rd ed. (Springer-Verlag, 2003).
  31. A. Corney, Atomic and Laser Spectroscopy (Oxford, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited