OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2461–2468

Graphene-supported tunable waveguide structure in the terahertz regime

Xiaoyong He and Sangin Kim  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2461-2468 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (975 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The tunable waveguide properties of the graphene supporting structure SiSiO2–graphene–dielectrics–graphene–SiO2Si (SiSiO2GDGSiO2Si) have been investigated in the terahertz regime by using the finite element method (FEM) and transfer matrix method (TMM). The study shows that the numerical results obtained from FEM and TMM agree well. The contour results show that as the frequency increases, the effective index increases, and the loss shows a peak; with the increase in the Fermi level, the effective index decreases, and the loss decreases. With a smaller effective mode area, the confinement of the SiSiO2GDGSiO2Si structure is much better than that of the Si–dielectrics–graphene–dielectrics–Si structure. The propagation properties of the structure can be modulated by using the applied gate voltage. The modulation depth of the propagation losses can reach more than 90%. The results are helpful to the design of tunable graphene optoelectronic devices, such as polarizers, modulators, and metamaterial devices.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(040.2235) Detectors : Far infrared or terahertz
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures
(170.6795) Medical optics and biotechnology : Terahertz imaging

ToC Category:
Optics at Surfaces

Original Manuscript: July 12, 2013
Manuscript Accepted: July 29, 2013
Published: August 26, 2013

Xiaoyong He and Sangin Kim, "Graphene-supported tunable waveguide structure in the terahertz regime," J. Opt. Soc. Am. B 30, 2461-2468 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  3. S. Lee and S. Kim, “Plasmonic mode-gap waveguides using heterometal films,” Opt. Express 18, 2197–2208 (2010). [CrossRef]
  4. X. Y. He, “Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region,” Opt. Express 17, 15359–15371 (2009). [CrossRef]
  5. X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic–dielectric stratified structures,” IEEE J. Quantum Electron. 48, 1554–1559 (2012). [CrossRef]
  6. S. Lee and S. Kim, “Long-range channel plasmon polaritons in thin metal film V-grooves,” Opt. Express 19, 9836–9847 (2011). [CrossRef]
  7. X. Y. He, Q. J. Wang, and S. F. Yu, “Numerical study of gain-assisted terahertz hybrid plasmonic waveguide,” Plasmonics 7, 571–577 (2012). [CrossRef]
  8. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef]
  9. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  10. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008). [CrossRef]
  11. A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81, 165413 (2010). [CrossRef]
  12. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stromer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Photonics 4, 532–535 (2008).
  13. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007). [CrossRef]
  14. A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009). [CrossRef]
  15. X. G. Xu, S. Sultan, C. Zhang, and J. C. Cao, “Nonlinear optical conductance in a graphene pn junction in the terahertz regime,” Appl. Phys. Lett. 97, 011907 (2010). [CrossRef]
  16. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012). [CrossRef]
  17. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012). [CrossRef]
  18. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011). [CrossRef]
  19. H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, and T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100, 243110 (2012). [CrossRef]
  20. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012). [CrossRef]
  21. C. Zhang, L. Chen, and Z. Ma, “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 77, 241402 (2008). [CrossRef]
  22. H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14, 125001 (2012). [CrossRef]
  23. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012). [CrossRef]
  24. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109, 073901 (2012). [CrossRef]
  25. J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20, 3556–3562 (2012). [CrossRef]
  26. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. T. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011). [CrossRef]
  27. D. R. Andersen, “Graphene-based long-wave infrared TM surface plasmon modulator,” J. Opt. Soc. Am. B 27, 818–823 (2010). [CrossRef]
  28. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490–1496 (2012). [CrossRef]
  29. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011). [CrossRef]
  30. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12, 4518–4522 (2012). [CrossRef]
  31. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011). [CrossRef]
  32. A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012). [CrossRef]
  33. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovíc, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
  34. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
  35. V. P. Gusynin and S. G. Sharapov, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 026222 (2007). [CrossRef]
  36. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012). [CrossRef]
  37. J. T. Lü and J. C. Cao, “Confined optical phonon modes and electron–phonon interactions in wurtzite GaN/ZnO quantum wells,” Phys. Rev. B 71, 155304 (2005). [CrossRef]
  38. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  39. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared—Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited