OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2476–2482

Extraordinary optical transmission through incommensurate metal hole arrays in the terahertz region

Yoji Jimba, Keisuke Takano, Masanori Hangyo, and Hiroshi Miyazaki  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2476-2482 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using coupled-mode analysis, we investigate numerically the extraordinary optical transmission (EOT) of incommensurate metal hole arrays (IMHAs) in the terahertz region to study how the degree of long-range and short-range orders affect EOT. In IMHAs, the holes of one set of metal hole arrays (MHAs) are regarded to work as impurities to the holes of another set of MHAs. Therefore, the transmittance spectra are expected to be significantly modified from those of the constituent MHAs. It is found that the resonance transmission frequencies of IMHAs almost coincide with those of the composite MHAs despite the fact that the surface waves of each MHA are mutually perturbed strongly due to the presence of short-range disorder. This indicates that the presence of long-range order is essential to establish EOT. These observations allow more flexible design of narrow bandpass filters in the terahertz region.

© 2013 Optical Society of America

OCIS Codes
(080.1238) Geometric optics : Array waveguide devices
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Geometric Optics

Original Manuscript: February 28, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 29, 2013
Published: August 26, 2013

Yoji Jimba, Keisuke Takano, Masanori Hangyo, and Hiroshi Miyazaki, "Extraordinary optical transmission through incommensurate metal hole arrays in the terahertz region," J. Opt. Soc. Am. B 30, 2476-2482 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  4. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).
  5. H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12, 1004–1010 (2004). [CrossRef]
  6. F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E72016608 (2005).
  7. J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007). [CrossRef]
  8. M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006). [CrossRef]
  9. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89, 121115 (2006). [CrossRef]
  10. A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).
  11. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007). [CrossRef]
  12. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
  13. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004). [CrossRef]
  14. J. Henzie, M. Lee, and T. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007). [CrossRef]
  15. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008). [CrossRef]
  16. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  17. H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
  18. J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010). [CrossRef]
  19. A. G. Markelz, A. Roitberg, and E. J. Heiweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000). [CrossRef]
  20. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000). [CrossRef]
  21. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002). [CrossRef]
  22. M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000). [CrossRef]
  23. D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999). [CrossRef]
  24. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  25. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–927 (2002). [CrossRef]
  26. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004). [CrossRef]
  27. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef]
  28. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006). [CrossRef]
  29. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef]
  30. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A4, 1970–1983 (1987). [CrossRef]
  31. N. Marcuvitz, Waveguide Handbook (Boston Technical, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited