OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2483–2490

Quantum steering for continuous-variable states

Chang-Woo Lee, Se-Wan Ji, and Hyunchul Nha  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2483-2490 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum steering is a stronger form of quantum entanglement and is considered to rigorously address the nonlocal correlation in the original Einstein–Podolsky–Rosen paradox. We study the quantum steerability of two classes of continuous-variable (CV) entangled states that are most often employed for CV quantum informatics-entangled coherent states (ECSs) and two-mode-squeezed vacuum (TMSV). We test the two steering criteria by utilizing Heisenberg and entropic uncertainty relations, respectively, and find that the latter can reveal the steerability of ECSs of any size and parity, whereas the former scarcely can. The steering behaviors of the two states are investigated and compared when they experience a noisy environment, i.e., an amplitude damping channel. When the noise is added asymmetrically, e.g., when only one party of the bipartite system is subject to noise, quantum steering can be possible only in one direction, e.g., Alice on Bob’s state but not Bob on Alice’s state. We show the emergence of this one-directional steering for both ECSs and the TMSV in a certain parameter range under decoherence.

© 2013 Optical Society of America

OCIS Codes
(270.6570) Quantum optics : Squeezed states
(000.2658) General : Fundamental tests
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: April 18, 2013
Manuscript Accepted: June 25, 2013
Published: August 26, 2013

Chang-Woo Lee, Se-Wan Ji, and Hyunchul Nha, "Quantum steering for continuous-variable states," J. Opt. Soc. Am. B 30, 2483-2490 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. Cambridge Philos. Soc. 31, 555–563 (1935) [“Die gegenwrtige situation in der quantenmechanik,” Naturwissenschaften 23, 807–812 (1935)]. [CrossRef]
  3. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  4. M. D. Reid, “Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A 40, 913–923 (1989). [CrossRef]
  5. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein–Podolsky–Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992). [CrossRef]
  6. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004). [CrossRef]
  7. D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nat. Phys. 6, 845 (2010). [CrossRef]
  8. S. P. Walborn, A. Salles, R. M. Gomes, F. Toscano, and P. H. Souto Ribeiro, “Revealing hidden Einstein–Podolsky–Rosen nonlocality,” Phys. Rev. Lett. 106, 130402 (2011). [CrossRef]
  9. A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein–Podolsky–Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012). [CrossRef]
  10. H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007). [CrossRef]
  11. E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox,” Phys. Rev. A 80, 032112 (2009). [CrossRef]
  12. S. L. W. Midgley, A. J. Ferris, and M. K. Olsen, “Asymmetric Gaussian steering: when Alice and Bob disagree,” Phys. Rev. A 81, 022101 (2010). [CrossRef]
  13. V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein–Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012). [CrossRef]
  14. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  15. See references in B. C. Sanders, “Review of entangled coherent states,” J. Phys. A 45, 244002 (2012). [CrossRef]
  16. N. Cerf, G. Leuchs, and E. S. Polzik, eds., Quantum Information with Continuous Variables of Atoms and Light (Imperial College, 2007).
  17. Q. Y. He, P. D. Drummond, and M. D. Reid, “Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems,” Phys. Rev. A 83, 032120 (2011). [CrossRef]
  18. I. Białynicki-Birula and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics,” Commun. Math. Phys. 44, 129–132 (1975). [CrossRef]
  19. M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of Gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006). [CrossRef]
  20. N.-Q. Jiang, H.-Y. Fan, L.-S. Xi, L.-Y. Tang, and X.-Z. Yuan, “Evolution of a two-mode squeezed vacuum in the amplitude dissipative channel,” Chin. Phys. B 20, 120302 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited