OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2498–2506

Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers

Soroush Shabahang, Guangming Tao, Joshua J. Kaufman, and Ayman F. Abouraddy  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2498-2506 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the results of systematic measurements of the group velocity dispersion (GVD) in chalcogenide glass (ChG) bulk samples, composite ChG fibers, and robust high-index-contrast nanotapers. The composite ChG-polymer fibers are drawn from an extruded multimaterial preform incorporating a thick built-in polymer jacket that is thermally compatible with the ChG used, and the nanotapers are then produced without removing the polymer. We isolate the contributions of material and waveguide GVD to the total dispersion in the nanotapers and support the results with finite-element simulations. These results indicate many possibilities for dispersion engineering and nonlinearity enhancement in all-solid index-guiding ChG fibers stemming from the flexibility of this fiber fabrication methodology.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(160.0160) Materials : Materials

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 19, 2013
Revised Manuscript: July 17, 2013
Manuscript Accepted: August 6, 2013
Published: August 26, 2013

Soroush Shabahang, Guangming Tao, Joshua J. Kaufman, and Ayman F. Abouraddy, "Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers," J. Opt. Soc. Am. B 30, 2498-2506 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011). [CrossRef]
  2. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Topics Quantum Elect. 15, 114–119 (2009). [CrossRef]
  4. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002). [CrossRef]
  5. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002). [CrossRef]
  6. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006). [CrossRef]
  7. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14, 11702–11708 (2006). [CrossRef]
  8. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008). [CrossRef]
  9. J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010). [CrossRef]
  10. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer-Verlag, 2007).
  11. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524–18534 (2008). [CrossRef]
  12. G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009). [CrossRef]
  13. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004). [CrossRef]
  14. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  16. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  17. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  18. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006). [CrossRef]
  19. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010). [CrossRef]
  20. B. Dabas and R. Sinha, “Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010). [CrossRef]
  21. S. A. Ray Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).
  22. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3, 349–368 (2012). [CrossRef]
  23. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011). [CrossRef]
  24. S. W. Haruna, K. S. Limb, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21, 945–947 (2011). [CrossRef]
  25. K. M. Mohsin, M. S. Alam, D. M. N. Hasan, and M. N. Hossain, “Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber,” Appl. Opt. 50, E102–E107 (2011). [CrossRef]
  26. S. D. Le, D. M. Nguyen, M. Thua, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011). [CrossRef]
  27. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012). [CrossRef]
  28. S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011). [CrossRef]
  29. J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011). [CrossRef]
  30. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide fiber nano-tapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012). [CrossRef]
  31. P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of mono-mode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989). [CrossRef]
  32. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13, 7424–7431 (2005). [CrossRef]
  33. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33, 1336–1338 (2008). [CrossRef]
  34. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009). [CrossRef]
  35. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49, 6236–6238 (2010). [CrossRef]
  36. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18, 18981–18988 (2010). [CrossRef]
  37. W. Burckhardt, “Refractive index and dispersion of glasses with different degrees of linking,” J. Non-Cryst. Solids 50, 173–182 (1982). [CrossRef]
  38. W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. 48, 633–636 (1958). [CrossRef]
  39. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3–5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35, 2907–2909 (2010). [CrossRef]
  40. N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011). [CrossRef]
  41. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993). [CrossRef]
  42. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005). [CrossRef]
  43. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27, 1707–1715 (2009). [CrossRef]
  44. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010). [CrossRef]
  45. S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).
  46. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984). [CrossRef]
  47. N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986). [CrossRef]
  48. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004). [CrossRef]
  49. M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006). [CrossRef]
  50. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007). [CrossRef]
  51. C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012). [CrossRef]
  52. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009). [CrossRef]
  53. J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012). [CrossRef]
  54. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985). [CrossRef]
  55. V. Page and L. Chen, “Measuring chromatic dispersion of optical fiber using time of flight and a tunable multi-wavelength semiconductor fiber laser,” Opt. Commun. 265, 161–170 (2006). [CrossRef]
  56. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001). [CrossRef]
  57. C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980). [CrossRef]
  58. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982). [CrossRef]
  59. T. M. Kardas and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009). [CrossRef]
  60. N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010). [CrossRef]
  61. G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009). [CrossRef]
  62. http://www.amorphousmaterials.com/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited