OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2507–2522

Variational theory of soliplasmon resonances

A. Ferrando, C. Milián, and D. V. Skryabin  »View Author Affiliations


JOSA B, Vol. 30, Issue 9, pp. 2507-2522 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002507


View Full Text Article

Enhanced HTML    Acrobat PDF (723 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a first-principles derivation of the variational equations describing the dynamics of the interaction of a spatial soliton and a surface plasmon polariton (SPP) propagating along a metal/dielectric interface. The variational ansatz is based on the existence of solutions exhibiting differentiated and spatially resolvable localized soliton and SPP components. These solutions, referred to as soliplasmons, can be physically understood as bound states of a soliton and an SPP, which dispersion relations intersect, allowing resonant interaction between them [Phys. Rev. A 79, 041803 (2009)]. The existence of soliplasmon states and their interesting nonlinear resonant behavior has been validated already by full-vector simulations of the nonlinear Maxwell’s equations, as reported in [Opt. Lett. 37, 4221 (2012)]. Here, we provide the theoretical analysis of the nonlinear oscillator model introduced in our previous work and present its rigorous derivation. We also provide some extensions of the model to improve its applicability.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 6, 2013
Revised Manuscript: July 27, 2013
Manuscript Accepted: July 30, 2013
Published: August 26, 2013

Citation
A. Ferrando, C. Milián, and D. V. Skryabin, "Variational theory of soliplasmon resonances," J. Opt. Soc. Am. B 30, 2507-2522 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-9-2507


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Y. Bliokh, Y. P. Bliokh, and A. Ferrando, “Resonant plasmon–soliton interaction,” Phys. Rev. A 79, 041803 (2009). [CrossRef]
  2. C. Milián, D. E. Ceballos-Herrera, D. V. Skryabin, and A. Ferrando, “Soliton–plasmon resonances as Maxwell nonlinear bound states,” Opt. Lett. 37, 4221–4223 (2012). [CrossRef]
  3. V. M. Agranovich, V. S. Babichenko, and V. Ya. Chernyak, “Nonlinear surface polaritons,” JETP Lett. 32, 512–515 (1980).
  4. G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985). [CrossRef]
  5. D. Mihalache, R. G. Nazmitdinov, and V. K. Fedyanin, “Polarized nonlinear surface waves in symmetric layered structures,” Phys. Scr. 29, 269–275 (1984). [CrossRef]
  6. J. Ariyasu, C. T. Seaton, G. I. Stegeman, A. A. Maradudin, and R. F. Wallis, “Nonlinear surface polaritons guided by metal films,” J. Appl. Phys. 58, 2460–2466 (1985). [CrossRef]
  7. W. Walasik, V. Nazabal, M. Chauvet, Y. Kartashov, and G. Renversez, “Low-power plasmon–soliton in realistic nonlinear planar structures,” Opt. Lett. 37, 4579–4581 (2012). [CrossRef]
  8. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  9. L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78, 1199–1202 (2010). [CrossRef]
  10. Y. Ekşioğlu, O. E. Müstecaplioğlu, and K. Güven, “Dynamical analysis of a weakly coupled nonlinear dielectric waveguide: surface-plasmon model as another type of Josephson junction,” Phys. Rev. A 84, 033805 (2011). [CrossRef]
  11. Y. Ekşioğlu, O. E. Müstecaplioğlu, and K. Güven, “Dissipative Josephson junction of an optical soliton and a surface plasmon,” Phys. Rev. A 87, 023823 (2013). [CrossRef]
  12. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2008).
  13. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596–598 (1983). [CrossRef]
  14. Under the usual consideration that χiiii(3)=3χjkjk(3) and χjkjk(3)=χjjkk(3)=χjkkj(3) (where i, j, k run over the Cartesian coordinates x, y, z), χ(3)≡χxxxx(3)=ε0cn2/2 and χ¯(3)=χ(3)/2.
  15. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Self-focusing and spatial plasmon–polariton solitons,” Opt. Express 17, 21732–21737 (2009). [CrossRef]
  16. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  18. Recall that Es=Cfs and H¯y=k0cβnp−1E¯npx, so that the plasmonic projection gives ∫ℝH¯y0|Es|2Enpx∼∫E¯npx(0)Enpxfs2∼O(e−2κsa), whereas the soliton one yields ∫ℝf¯s(0)Enpxfs2∼O(e−(2κs+κs0)a). Both are negligible in the weak coupling approximation. An analogous argument holds for the Es2Enpx* term.
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  20. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface–plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007). [CrossRef]
  21. This exchange of energy is visible in the figures presented in [2] showing the propagation of a perturbed soliplasmon field along the surface, in which the flux of the Poynting vector is represented. One should remark at this point that these simulations are the result of solving the full nonlinear vector Maxwell’s equations (1) numerically.
  22. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  23. E. Feigenbaum and M. Orenstein, “Plasmon–soliton,” Opt. Lett. 32, 674–676 (2007). [CrossRef]
  24. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010). [CrossRef]
  25. D. V. Skryabin, A. V. Gorbach, and A. Marini, “Surface-induced nonlinearity enhancement of TM modes in planar subwavelength waveguides,” J. Opt. Soc. Am. B 28, 109–114 (2011). [CrossRef]
  26. A. Marini, D. V. Skryabin, and B. Malomed, “Stable spatial plasmon solitons in a dielectric–metal–dielectric geometry with gain and loss,” Opt. Express 19, 6616–6622 (2011). [CrossRef]
  27. A. Marini and D. V. Skryabin, “Ginzburg–Landau equation bound to the metal–dielectric interface and transverse nonlinear optics with amplified plasmon polaritons,” Phys. Rev. A 81, 033850 (2010). [CrossRef]
  28. C. Milián and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited