OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2529–2534

Spiral surface plasmon modes on uniform and tapered metallic nanorods

Chih-Min Chen, Chih-Kai Young, Kuan-Ren Chen, and Yung-Chiang Lan  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2529-2534 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spiral surface plasmon (SSP) modes on uniform and tapered silver nanorods are explored by performing both simulations and theoretical analyses. On a uniform nanorod with a radius equal to 240 nm, the SSP modes can be generated by linearly superposed higher-order HE1 and HE2 eigenmodes. Both the single- and triple-stranded SSP modes are produced by controlling the relative rotation direction of the two component modes. On a tapered nanorod, the spiral pitch of the SSP mode decreases with the reduction of nanorod radius. However, the field energy density along the nanorod axis increases to a maximum value and then falls.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 23, 2013
Revised Manuscript: July 15, 2013
Manuscript Accepted: August 8, 2013
Published: August 26, 2013

Chih-Min Chen, Chih-Kai Young, Kuan-Ren Chen, and Yung-Chiang Lan, "Spiral surface plasmon modes on uniform and tapered metallic nanorods," J. Opt. Soc. Am. B 30, 2529-2534 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010). [CrossRef]
  2. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys Rev. Lett. 104, 163901 (2010). [CrossRef]
  3. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011). [CrossRef]
  4. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008). [CrossRef]
  5. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef]
  6. Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010). [CrossRef]
  7. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010). [CrossRef]
  8. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 8.
  9. D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994). [CrossRef]
  10. D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College, 2003).
  11. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974). [CrossRef]
  12. B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12, 6–18 (1992). [CrossRef]
  13. S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992). [CrossRef]
  14. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997). [CrossRef]
  15. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008). [CrossRef]
  16. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011). [CrossRef]
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  19. Y. C. Lan, C. J. Chang, and P. H. Lee, “Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation,” Opt. Lett. 34, 25–27 (2009). [CrossRef]
  20. A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008). [CrossRef]
  21. F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21, 738–745 (2011). [CrossRef]
  22. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94, 243304 (2009). [CrossRef]
  23. C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105, 235501 (2010). [CrossRef]
  24. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011). [CrossRef]
  25. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited