OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2540–2548

Coherent double-switching between superluminal and subluminal propagation of probe pulse via AC Stark shift

Saswata Ghosh  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2540-2548 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The group index and its lineshape parameters of a relatively weak double-resonance probe pulse (signal) propagating through an open doubly driven M-type five-level atomic system are analytically formulated. It is shown for the first time, to our knowledge, that the group velocity status of the signal can be altered (between superluminal and subluminal propagation) by the combined effect of atomic coherence and linear AC Stark shift through coherent coupling. The distinct feature in this scheme is that, although it does not rely on electromagnetically induced transparency, a double-switching effect (i.e., from superluminal to subluminal and vice versa) is observed with negligible absorption/gain at two different frequency regimes.

© 2013 Optical Society of America

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(270.5530) Quantum optics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 29, 2013
Revised Manuscript: July 17, 2013
Manuscript Accepted: July 31, 2013
Published: August 28, 2013

Saswata Ghosh, "Coherent double-switching between superluminal and subluminal propagation of probe pulse via AC Stark shift," J. Opt. Soc. Am. B 30, 2540-2548 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  3. M. D. Lukin and A. Imamoglu, “Controlling photons with electromagnetically induced transparency,” Nature 413, 273–276 (2001). [CrossRef]
  4. X. Yang and Y. Wu, “Achieving an ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in a double-λ system,” J. Opt. B 7, 54–56 (2005). [CrossRef]
  5. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef]
  6. D. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef]
  7. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef]
  8. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001). [CrossRef]
  9. D. Hughes and N. Hansen, “Graded nanostructures produced by sliding and exhibiting universal behavior,” Phys. Rev. Lett. 87, 135503 (2001). [CrossRef]
  10. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994). [CrossRef]
  11. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000). [CrossRef]
  12. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001). [CrossRef]
  13. D. Han, Y. Zeng, Y. Bai, W. Chen, and H. Lu, “Phase effects on group velocity propagation in a V-type system with spontaneously generated coherence,” J. Mod. Opt. 54, 493–500 (2007). [CrossRef]
  14. M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, “Tunable phase control for subluminal to superluminal light propagation,” Phys. Rev. A 70, 023813 (2004). [CrossRef]
  15. H. Tajalli and M. Sahrai, “Switching from normal to anomalous dispersion via coherent field,” J. Opt. B 7, 168–173 (2005). [CrossRef]
  16. G. S. Agarwal and T. N. Dey, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001). [CrossRef]
  17. A. D. Wilson-Gordon and H. Friedmann, “Positive and negative dispersion in a three-level Λ system driven by a single pump,” J. Mod. Opt. 49, 125–139 (2002). [CrossRef]
  18. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transit line,” Phys. Rev. A 68, 013810 (2003). [CrossRef]
  19. H. Kang, L. Wen, and Y. Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003). [CrossRef]
  20. G. S. Agarwal and S. Dasgupta, “Superluminal propagation via coherent manipulation of the Raman gain process,” Phys. Rev. A 70, 023802 (2004). [CrossRef]
  21. L. Deng, E. W. Hagley, M. Kozuma, and M. G. Payne, “Optical-wave group-velocity reduction without electromagnetically induced transparency,” Phys. Rev. A 65, 051805(R) (2002). [CrossRef]
  22. S. Stenholm, Foundations of Laser Spectroscopy (Wiley, 1983).
  23. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  24. J. Miynek and W. Lange, “A simple method of observing coherent ground state transients,” Opt. Commun. 30, 337–340 (1979). [CrossRef]
  25. S. Ghosh and S. Mandal, “Analytical studies on pump-induced optical resonances in an M-type six-level system,” J. Phys. B 43, 245505 (2010). [CrossRef]
  26. S. Ghosh and S. Mandal, “Double-control coherent absorption and transparency in a six-level optical gain medium,” Phys. Scr. 84, 045405 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited