OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 2560–2562

Simple quantum key distribution scheme with excellent long-term stability

Hai-Qiang Ma, Ke-Jin Wei, and Jian-Hui Yang  »View Author Affiliations

JOSA B, Vol. 30, Issue 9, pp. 2560-2562 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple plug-and-play quantum key distribution scheme based on the Sagnac interferometer and Faraday mirrors is described. There are relatively few components, and fiber birefringence effects are automatically compensated for, allowing extremely stable operation. Visibility better than 95% over 50 km of fiber at 1.31 μm is obtained, maintainable under ordinary lab conditions for several hours without the need of any feedback control or adjustments.

© 2013 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 28, 2013
Revised Manuscript: July 17, 2013
Manuscript Accepted: August 8, 2013
Published: August 30, 2013

Hai-Qiang Ma, Ke-Jin Wei, and Jian-Hui Yang, "Simple quantum key distribution scheme with excellent long-term stability," J. Opt. Soc. Am. B 30, 2560-2562 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” J. Am. Inst. Electr. Eng. 45, 295–301 (1926). [CrossRef]
  2. C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949). [CrossRef]
  3. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, December10–12, 1984 (IEEE, 1984), pp. 175–179.
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  5. C. Marand and P. D. Townsend, “Quantum key distribution over distances as long as 30 km,” Opt. Lett. 20, 1695–1697 (1995). [CrossRef]
  6. T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009). [CrossRef]
  7. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997). [CrossRef]
  8. J. Chen, G. Wu, Y. Li, E. Wu, and H. P. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007). [CrossRef]
  9. C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007). [CrossRef]
  10. C. Gobby, Z. Yuan, and A. Shields, “Quantum key distribution over 122 km of standard telecomber,” Appl. Phys. Lett. 84, 3762–3764 (2004). [CrossRef]
  11. X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday–Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005). [CrossRef]
  12. H. Q. Ma, J. L. Zhao, and L. A. Wu, “Quantum key distribution based on phase encoding and polarization measurement,” Opt. Lett. 32, 698–700 (2007). [CrossRef]
  13. B. Kraus, C. Branciard, and R. Renner, “Security of quantum-key-distribution protocols using two-way classical communication or weak coherent pulses,” Phys. Rev. A 75, 012316 (2007). [CrossRef]
  14. C.-H. F. Fung, X. F. Ma, H. F. Chau, and Q. Y. Cai, “Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol,” Phys. Rev. A 85, 032308 (2012). [CrossRef]
  15. H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005). [CrossRef]
  16. X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005). [CrossRef]
  17. X. F. Xing, W. Shuang, H. Z. Fu, and G. G. Can, “Passive decoy state sarg04 quantum-key-distribution with practical photon-number resolving detectors,” Chin. Phys. B 19, 100312 (2010). [CrossRef]
  18. H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).
  19. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008). [CrossRef]
  20. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010). [CrossRef]
  21. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012). [CrossRef]
  22. T. Ferreira da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012). [CrossRef]
  23. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992). [CrossRef]
  24. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  25. W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 57901 (2003). [CrossRef]
  26. K. J. Wei, H. Q. Ma, and J. H. Yang, “Experimental circular quantum secret sharing over telecom fiber network,” Opt. Express 21, 16663–16669 (2013). [CrossRef]
  27. H. Q. Ma, J. L. Zhao, and L. A. Wu, “A simple plug-and-play quantum key distribution scheme with extremely long-term stability,” in Conference on Lasers and Electro-Optics Pacific Rim, 2007, August26–31, 2007 (IEEE, 2007), pp. 1–2.
  28. R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008). [CrossRef]
  29. Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited