OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 120–127

Ultrafast dynamics induced by coherent exciton–plasmon coupling in quantum dot-metallic nanoshell systems

S. M. Sadeghi and K. D. Patty  »View Author Affiliations


JOSA B, Vol. 31, Issue 1, pp. 120-127 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000120


View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study ultrafast coherent-plasmonic dynamics of hybrid systems consisting of one semiconductor quantum dot and one metallic nanoshell when they interact with a laser field with a step-like amplitude rise. It is shown that such dynamics is generated when quantum coherence in these systems can generate a retarded super-enhanced local field. This process happens in the picosecond range when the applied laser field ceases to be time-dependent. We show such a field generates a strong impulse, leading to a dramatic upheaval of the collective properties of the system. These include ultrafast oscillations of the effective transition energy and linewidth of the quantum dot, and generation of a polarization pulse. Within this pulse the Förster resonance energy transfer from the quantum dot to the nanoshell happens at a significantly high rate, while after that it is blocked nearly completely. We study the collective molecular resonances of this system using Rayleigh scattering and show how the frequency of the field impulse can be tuned. The intrinsic differences between such resonances and those involving spherical metallic nanoparticles are discussed.

© 2013 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(270.0270) Quantum optics : Quantum optics
(350.5400) Other areas of optics : Plasmas
(160.4236) Materials : Nanomaterials
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Materials

History
Original Manuscript: September 5, 2013
Revised Manuscript: November 20, 2013
Manuscript Accepted: November 20, 2013
Published: December 16, 2013

Citation
S. M. Sadeghi and K. D. Patty, "Ultrafast dynamics induced by coherent exciton–plasmon coupling in quantum dot-metallic nanoshell systems," J. Opt. Soc. Am. B 31, 120-127 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-1-120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006). [CrossRef]
  2. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620–625 (2007). [CrossRef]
  3. K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single cdse/zns nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008). [CrossRef]
  4. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007). [CrossRef]
  5. U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009). [CrossRef]
  6. S. M. Sadeghi and R. G. West, “Coherent control of forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys. Condens. Matter 23, 425302 (2011). [CrossRef]
  7. M.-T. Cheng, S.-D. Liu, H.-J. Zhou, H.-J. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007). [CrossRef]
  8. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot–metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009). [CrossRef]
  9. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticles conjugates,” Phys. Rev. B 79, 233309 (2009). [CrossRef]
  10. S. M. Sadeghi, “Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton-plasmon coupling,” Phys. Rev. A 88, 013831 (2013). [CrossRef]
  11. Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009). [CrossRef]
  12. Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013). [CrossRef]
  13. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008). [CrossRef]
  14. A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011). [CrossRef]
  15. J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012). [CrossRef]
  16. Z. Wang and B. Yu, “Switching from optical bistability to multistability in a coupled semiconductor double-quantum-dot nanostructure,” J. Opt. Soc. Am. B 30, 2915–2920 (2013). [CrossRef]
  17. M. R. Singh, “Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system,” Nanotechnology 24, 125701 (2013). [CrossRef]
  18. S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012). [CrossRef]
  19. M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011). [CrossRef]
  20. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]
  21. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010). [CrossRef]
  22. S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009). [CrossRef]
  23. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011). [CrossRef]
  24. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010). [CrossRef]
  25. A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology 23, 205203 (2012). [CrossRef]
  26. Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nanoscale Res. Lett. 7, 95 (2012). [CrossRef]
  27. S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013). [CrossRef]
  28. A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012). [CrossRef]
  29. S. M. Sadeghi, “Control of energy dissipation in nanoparticle optical devices: nearly loss-free switching and modulation,” J. Nanopart. Res 14, 1184 (2012). [CrossRef]
  30. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef]
  31. A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013). [CrossRef]
  32. S. M. Sadeghi, “Plasmonically induced gain without inversion in quantum dots,” Nanotechnology 21, 455401 (2010). [CrossRef]
  33. A. Pernice, J. Helm, and W. T. Strunz, “Models of decoherence with negative dephasing rate,” arXiv:1202.4280 (2012).
  34. S. M. Sadeghi, “Plasmonic meta-resonance nanosensors: ultra-sensitive sensors based on nanoparticle molecules,” IEEE Trans. Nanotechnol. 10, 566–571 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited