OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 128–134

Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration

Zhi-Yuan Zhou, Dong-Sheng Ding, Yan Li, Fu-Yuan Wang, and Bao-Sen Shi  »View Author Affiliations

JOSA B, Vol. 31, Issue 1, pp. 128-134 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the generation of a bright photon source at telecom wavelengths using spontaneous parametric down-conversion in a type II periodically poled potassium titanyl phosphate crystal. Simultaneous resonances of the pump and the two down-converted fields are achieved with a properly designed optical cavity. This triple-resonance optical parametric oscillator operates far below threshold, generating photon pairs at 1560 nm wavelength with a bandwidth of 8 MHz. Time correlation measurements produce an estimate of 27.7 ns for the coherence time, and production rate of 134±25s1MHz1mW1 for photon pairs. As photon pairs in the telecom regime are suitable for long-distance transmission, this source may find application in quantum communications.

© 2013 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.6080) Optical devices : Sources
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: July 31, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: November 21, 2013
Published: December 18, 2013

Zhi-Yuan Zhou, Dong-Sheng Ding, Yan Li, Fu-Yuan Wang, and Bao-Sen Shi, "Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration," J. Opt. Soc. Am. B 31, 128-134 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998). [CrossRef]
  2. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).
  3. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008). [CrossRef]
  4. C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003). [CrossRef]
  5. B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010). [CrossRef]
  6. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970). [CrossRef]
  7. J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006). [CrossRef]
  8. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003). [CrossRef]
  9. Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atom ensemble,” Opt. Express 16, 21708–21713 (2008). [CrossRef]
  10. X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009). [CrossRef]
  11. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20, 11433–11444 (2012). [CrossRef]
  12. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000). [CrossRef]
  13. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006). [CrossRef]
  14. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999). [CrossRef]
  15. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000). [CrossRef]
  16. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004). [CrossRef]
  17. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006). [CrossRef]
  18. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Tahakashi, A. I. Vistnes, and E. S. Polzik, “High purity bright photon source,” Opt. Express 15, 7940–7949 (2007). [CrossRef]
  19. F. Y. Wang, B. S. Shi, and G. C. Guo, “Observation of time correlation function of multi-mode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008). [CrossRef]
  20. B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008). [CrossRef]
  21. X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008). [CrossRef]
  22. F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283, 2974–2977 (2010). [CrossRef]
  23. M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultra-bright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102, 063603 (2009). [CrossRef]
  24. M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009). [CrossRef]
  25. F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008). [CrossRef]
  26. Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric down conversion,” Laser Phys. 20, 1221–1233 (2010). [CrossRef]
  27. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009). [CrossRef]
  28. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  29. U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77, 023826 (2008). [CrossRef]
  30. A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55–57 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited