OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 135–143

Subwavelength Bessel beams in wire media

Carlos J. Zapata-Rodríguez and Juan J. Miret  »View Author Affiliations


JOSA B, Vol. 31, Issue 1, pp. 135-143 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000135


View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nanostructures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett model, we provide a general analytical expression of the electromagnetic fields that can propagate along the direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of diffraction.

© 2013 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(160.1245) Materials : Artificially engineered materials
(050.2065) Diffraction and gratings : Effective medium theory

ToC Category:
Physical Optics

History
Original Manuscript: September 5, 2013
Manuscript Accepted: November 11, 2013
Published: December 18, 2013

Citation
Carlos J. Zapata-Rodríguez and Juan J. Miret, "Subwavelength Bessel beams in wire media," J. Opt. Soc. Am. B 31, 135-143 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-1-135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill International Editions, 1996).
  2. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).
  3. A. E. Siegman, Lasers (University Science Books, 1986).
  4. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  5. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  6. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef]
  7. C. López-Mariscal and J. C. Gutiérrez-Vega, “Observation of optical guiding using thermal light,” J. Opt. 12, 075702 (2010). [CrossRef]
  8. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006). [CrossRef]
  9. F. Courvoisier, P.-A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34, 3163–3165 (2009). [CrossRef]
  10. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21, 13824–13839 (2013). [CrossRef]
  11. A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photon. News 24, 22–29 (2013). [CrossRef]
  12. M. Ornigotti and A. Aiello, “Radially and azimuthally polarized nonparaxial Bessel beams made simple,” Opt. Express 21, 15530–15537 (2013). [CrossRef]
  13. S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B 6, 477–481 (2004). [CrossRef]
  14. O. Manela, M. Segev, and D. N. Christodoulides, “Nondiffracting beams in periodic media,” Opt. Lett. 30, 2611–2613 (2005). [CrossRef]
  15. J. J. Miret and C. J. Zapata-Rodrguez, “Diffraction-free beams with elliptic Bessel envelope in periodic media,” J. Opt. Soc. Am. B 25, 1–6 (2008). [CrossRef]
  16. S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, “Transformation of high-order Bessel vortices in one-dimensional photonic crystals,” J. Opt. 12, 015704 (2010). [CrossRef]
  17. J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, “Angular-spectrum representation of nondiffracting X waves,” Phys. Rev. E 54, 4347–4352 (1996). [CrossRef]
  18. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31, 1726–1728 (2006). [CrossRef]
  19. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34, 722–724 (2009). [CrossRef]
  20. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett 107, 116802 (2011). [CrossRef]
  21. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011). [CrossRef]
  22. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012). [CrossRef]
  23. J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free propagation of subwavelength light beams in layered media,” J. Opt. Soc. Am. B 27, 1435–1445 (2010). [CrossRef]
  24. C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, and J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express 19, 19572–19581 (2011). [CrossRef]
  25. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006). [CrossRef]
  26. J. J. Miret, D. Pastor, and C. J. Zapata-Rodríguez, “Subwavelength surface waves with zero diffraction,” J. Nanophoton. 5, 051801 (2011). [CrossRef]
  27. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012). [CrossRef]
  28. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003). [CrossRef]
  29. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006). [CrossRef]
  30. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007). [CrossRef]
  31. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, 1999).
  32. A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002). [CrossRef]
  33. A. Ciattoni and C. Palma, “Nondiffracting beams in uniaxial media propagating orthogonally to the optical axis,” Opt. Commun. 224, 175–183 (2003). [CrossRef]
  34. V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21, 15048–15064 (2013). [CrossRef]
  35. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, 2001).
  36. E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  37. K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photon. 4, 1–77 (2012). [CrossRef]
  38. P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006). [CrossRef]
  39. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited