OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 154–163

Experimental tripartite quantum state sharing and perfect teleportation of the two-qubit photonic state using genuinely entangled multipartite states

Parminder S. Bhatia  »View Author Affiliations


JOSA B, Vol. 31, Issue 1, pp. 154-163 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000154


View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental scheme, its hardware implementation, and procedure for experimental verification of tripartite quantum state sharing and perfect teleportation of the two-qubit photonic state using four different multipartite quantum channels is presented. The four multipartite channels considered are (1) a pair of Greenberger–Horne–Zeilinger triplets, (2) a six-particle cluster state, (3) a highly entangled five-particle Brown state, and (4) a highly entangled six-particle Borras state. In this experiment, optical pulses are delivered by a high repetition rate mode-locked pulsed laser and arbitrary photonic states, in the two-qubit Bloch sphere, are created by the spontaneous parametric down-conversion of optical pulses in a nonlinear crystal. The experimental implementation of the scheme is based on both single-particle and two-particle complete Bell-state measurements, and the unitary transformation required for reconstruction of the qubit is performed using single- and two-qubit operations. Two-qubit operations are implemented using the quantum controlled phase and C-NOT gates. Relative comparison among different multipartite channels along with experimental difficulties and their solutions are also discussed.

© 2013 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(320.2250) Ultrafast optics : Femtosecond phenomena
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 11, 2013
Revised Manuscript: November 20, 2013
Manuscript Accepted: November 27, 2013
Published: December 23, 2013

Citation
Parminder S. Bhatia, "Experimental tripartite quantum state sharing and perfect teleportation of the two-qubit photonic state using genuinely entangled multipartite states," J. Opt. Soc. Am. B 31, 154-163 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-1-154


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
  2. N. Paul, J. V. Menon, S. Karumanchi, S. Muralidharan, and P. K. Panigrahi, “Quantum tasks using six qubit cluster states,” Quant. Info. Proc. 10, 619–632 (2011). [CrossRef]
  3. S. Muralidharan and P. Panigrahi, “Perfect teleportation, quantum-state sharing, and superdense coding through genuinely entangled five-qubit state,” Phys. Rev. A 77, 032321 (2008). [CrossRef]
  4. S. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009). [CrossRef]
  5. Y. Li and K. Hou, “Tripartite controlled teleportation of an arbitrary two-qubit state with multipartite cluster states,” Int. J. Quantum. Inform. 08, 969–977 (2010). [CrossRef]
  6. K. Hou, Y. Li, and S. Shi, “Quantum state sharing with genuinely entangled five-qubit state and Bell-state measurements,” Opt. Commun. 283, 1961–1965 (2010). [CrossRef]
  7. D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell’s theorem” in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic, 1989), pp. 73–76.
  8. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001). [CrossRef]
  9. I. D. K. Brown, S. Stepney, A. Sudbery, and S. L. Braunstein, “Searching for highly entangled multi-qubit states,” J. Phys. A 38, 1119–1131 (2005). [CrossRef]
  10. A. Borras, A. R. Plastino, J. Batle, C. Zander, M. Casas, and A. Plastino, “Multiqubit systems: highly entangled states and entanglement distribution,” J. Phys. A 40, 13407–13421 (2007). [CrossRef]
  11. G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005). [CrossRef]
  12. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76, 127–137 (1998). [CrossRef]
  13. H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999). [CrossRef]
  14. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008). [CrossRef]
  15. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  16. J. G. Rarity and P. R. Tapster, “Three-particle entanglement from entangled photon pairs and a weak coherent state,” Phys. Rev. A 59, R35–R38 (1999). [CrossRef]
  17. H. Lu, J. Zhang, X. Wang, Y. Li, and C. Wang, “Experimental high-intensity three-photon entangled source,” Phys. Rev. A 78, 033819 (2008). [CrossRef]
  18. M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Guhne, P. Hyllus, D. Bru, M. Lewenstein, and A. Sanpera, “Experimental detection of multipartite entanglement using witness operators,” Phys. Rev. Lett. 92, 087902 (2004). [CrossRef]
  19. M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states,” Phys. Rev. A 69, 062311 (2004). [CrossRef]
  20. D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005). [CrossRef]
  21. T. P. Bodiya and L. M. Duan, “Scalable generation of graph-state entanglement through realistic linear optics,” Phys. Rev. Lett. 97, 143601 (2006). [CrossRef]
  22. C. Lu, X. Zhou, O. Guhne, W. Gao, J. Zhang, Z. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007). [CrossRef]
  23. G. Toth and O. Guhne, “Entanglement detection in the stabilizer formalism,” Phys. Rev. A 72, 022340 (2005). [CrossRef]
  24. D. Liu, X. Zhou, and G. L. Long, “Multiple entropy measures for multipartite quantum entanglement,” arXiv:0705.3904 (2007).
  25. Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001). [CrossRef]
  26. H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postselection,” Phys. Rev. A 66, 024308 (2002). [CrossRef]
  27. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005). [CrossRef]
  28. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001). [CrossRef]
  29. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of nondeterministic quantum logic operations using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002). [CrossRef]
  30. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004). [CrossRef]
  31. D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger–Horne–Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999). [CrossRef]
  32. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  33. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001). [CrossRef]
  34. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  35. H. Yonezawa, T. Aokl, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431, 430–433 (2004). [CrossRef]
  36. P. S. Bhatia, “Controlled quantum dense coding using six-photon cluster state,” submitted for publication.
  37. X. Chen, S. Ma, Y. Su, R. Zhang, and Y. Yang, “Controlled remote state preparation of arbitrary two and three qubit states via the Brown state,” Quant. Info. Proc. 11, 1653–1667 (2012). [CrossRef]
  38. M. Luo, J. Peng, and Z. Mo, “Joint remote preparation of an arbitrary five-qubit Brown state,” Int. J. Theor. Phys. 52, 644–653 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited