OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 164–174

Inverse design of nanostructured surfaces for color effects

Jacob Andkjær, Villads Egede Johansen, Kasper Storgaard Friis, and Ole Sigmund  »View Author Affiliations


JOSA B, Vol. 31, Issue 1, pp. 164-174 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000164


View Full Text Article

Enhanced HTML    Acrobat PDF (2308 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The methodology is based on a 2D topology optimization formulation based on frequency-domain finite element simulations for E and/or H polarized waves. The goal of the optimization is to maximize color intensity in prescribed direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable color vector can be generated; that complex structures can generate more intense colors than simple layerings; that angle independent colorings can be obtained at the cost of reduced intensity; and that performance and optimized surface topologies are relatively independent on light polarization.

© 2013 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(230.4170) Optical devices : Multilayers
(330.1690) Vision, color, and visual optics : Color
(310.6628) Thin films : Subwavelength structures, nanostructures
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 28, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 27, 2013
Published: December 24, 2013

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Jacob Andkjær, Villads Egede Johansen, Kasper Storgaard Friis, and Ole Sigmund, "Inverse design of nanostructured surfaces for color effects," J. Opt. Soc. Am. B 31, 164-174 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-1-164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kolle, Photonic Structures Inspired by Nature (Springer, 2011).
  2. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. Chem. 6, 1442–1459 (2005). [CrossRef]
  3. M. Crne, V. Sharma, J. Blair, J. O. Park, C. J. Summers, and M. Srinivasarao, “Biomimicry of optical microstructures of Papilio palinurus,” Europhys. Lett. 93, 14001 (2011). [CrossRef]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008). [CrossRef]
  5. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48, 4177–4190 (2009). [CrossRef]
  6. M. A. Steindorfer, V. Schmidt, M. Belegratis, B. Stadlober, and J. R. Krenn, “Detailed simulation of structural color generation inspired by the Morpho butterfly,” Opt. Express 20, 21485–21494 (2012). [CrossRef]
  7. N. Okada, D. Zhu, D. Cai, J. B. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42, 25–36 (2013). [CrossRef]
  8. A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mat. 12, 064709 (2011). [CrossRef]
  9. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012). [CrossRef]
  10. D. C. Dobson, “Optimal design of periodic antireflective structures for the Helmholtz equation,” Euro. J. Appl. Math. 4, 321–339 (1993). [CrossRef]
  11. K. Fuchi, A. R. Diaz, E. Rothwell, R. Ouedraogo, and A. Temme, “Topology optimization of periodic layouts of dielectric materials,” Struct. Multidiscip. Optim. 42, 483–493 (2010). [CrossRef]
  12. K. S. Friis and O. Sigmund, “Robust topology design of periodic grating surfaces,” J. Opt. Soc. Am. B 29, 2935–2943 (2012). [CrossRef]
  13. M. P. Bendsøe and O. Sigmund, Topology Optimization—Theory, Methods and Applications (Springer-Verlag, 2004).
  14. M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988). [CrossRef]
  15. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005). [CrossRef]
  16. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011). [CrossRef]
  17. Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3D nanophotonic devices,” Photon. Nanostruct. Fundam. Appl., doi: 10.1016/j.photonics.2013.07.008 (2013). [CrossRef]
  18. A. Erentok and O. Sigmund, “Topology optimization of sub-wavelength antennas,” IEEE Trans. Anten. Propag. 59, 58–69 (2011). [CrossRef]
  19. A. R. Diaz and O. Sigmund, “A topology optimization method for design of negative permeability metamaterials,” Struct. Multidiscip. Optim. 41, 163–177 (2010). [CrossRef]
  20. J. Jin, The Finite Element Method in Electromagnetics2nd ed. (Wiley, 2002).
  21. CIE, “Selected colorimetric tables,” http://www.cie.co.at .
  22. R. S. Berns, F. W. Billmeyer, and M. Saltzman, Billmeyer and Saltzman’s Principles of Color Technology (Wiley-Interscience, 2000).
  23. A. Saito, Y. Miyamura, Y. Ishikawa, J. Murase, M. Akai-Kasaya, and Y. Kuwahara, “Reproduction, mass production, and control of the Morpho butterfly’s blue,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, T. J. Suleski, W. V. Schoenfeld, and J. J. Wang, eds. (SPIE, 2009), Vol. 7205, p. 720506.
  24. A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011). [CrossRef]
  25. J. A. Andkjær, S. Nishiwaki, T. Nomura, and O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons,” J. Opt. Soc. Am. B 27, 1828–1832 (2010). [CrossRef]
  26. O. Sigmund, “On the usefulness of non-gradient approaches in topology optimization,” Struct. Multidisc. Optim. 43, 589–596 (2011). [CrossRef]
  27. O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sinica 25, 227–239 (2009). [CrossRef]
  28. F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidisc. Optim. 43, 767–784 (2011). [CrossRef]
  29. K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Intern. J. Numer. Meth. Eng. 24, 359–373 (1987). [CrossRef]
  30. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012). [CrossRef]
  31. M. B. Dühring and O. Sigmund, “Optimization of extraordinary optical absorption in plasmonic and dielectric structures,” J. Opt. Soc. Am. B 30, 1154–1160 (2013). [CrossRef]
  32. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19, A841–A850 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited