OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 45–52

Controlling self-focusing of ultrashort pulses with anomalous self-steepening in nonlinear negative-index materials

Jinggui Zhang, Yuanjiang Xiang, Shuangchun Wen, and Yongfan Li  »View Author Affiliations

JOSA B, Vol. 31, Issue 1, pp. 45-52 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Controllable and dispersive magnetic permeability in negative-index materials (NIMs) offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort pulses at will. In this paper, we will investigate the self-focusing of ultrashort pulses associated with anomalous nonlinear self-steepening (SS) effect and anomalous space–time focus (linear SS) effect in bulk NIMs with a nonlinear electric polarization, trying to disclose some unusual behaviors different from those in naturally positive-index materials. It is found that negative SS acts to push the peak intensity toward the trailing edge of a pulse and the resulting spectrum exhibits a broad redshifted trail; however, positive SS leads to the occurrence of the opposite situation in both temporal and spectral domains, that is, the peak intensity will move toward the leading edge of the pulse by shifting the spectrum toward the blue side. In addition, compared with the case in positive-index materials (PIMs), another most notable property of NIMs is that, whether self-focusing of ultrashort pulses will occur at the leading or the trailing edge can be manipulated freely by engineering the SS effect by choosing the size of split-ring resonator circuit elements. Our analysis is performed by directly numerically solving nonlinear Schrödinger equations as well as by using the moment method, both showing consistent results. These findings demonstrate that NIMs can provide us unique opportunities unattainable in PIMs to manipulate ultrashort pulse propagation.

© 2013 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: August 5, 2013
Revised Manuscript: November 10, 2013
Manuscript Accepted: November 11, 2013
Published: December 9, 2013

Jinggui Zhang, Yuanjiang Xiang, Shuangchun Wen, and Yongfan Li, "Controlling self-focusing of ultrashort pulses with anomalous self-steepening in nonlinear negative-index materials," J. Opt. Soc. Am. B 31, 45-52 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  6. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005). [CrossRef]
  7. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006). [CrossRef]
  8. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003). [CrossRef]
  9. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004). [CrossRef]
  10. M. Lapine, M. Gorkunov, and K. H. Ringhofer, “Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements,” Phys. Rev. E 67, 065601 (2003). [CrossRef]
  11. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Tunable transmission and bistability in left-handed band-gap structures,” Appl. Phys. Lett. 85, 1451–1453 (2004). [CrossRef]
  12. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Second-harmonic generation in nonlinear left-handed metamaterials,” J. Opt. Soc. Am. B 23, 529–534 (2006). [CrossRef]
  13. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006). [CrossRef]
  14. S. Feng and K. Halterman, “Parametrically shielding electromagnetic fields by nonlinear metamaterials,” Phys. Rev. Lett. 100, 063901 (2008). [CrossRef]
  15. N. Lazarides and G. P. Tsironis, “Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials,” Phys. Rev. E 71, 036614 (2005). [CrossRef]
  16. M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005). [CrossRef]
  17. G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Ultraslow light pulses in a nonlinear metamaterial,” J. Opt. Soc. Am. B 25, 1236–1241 (2008). [CrossRef]
  18. P. Kinsler, “Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses,” Phys. Rev. A 81, 023808 (2010). [CrossRef]
  19. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81, 013819 (2010). [CrossRef]
  20. I. Kourakis and P. K. Shukla, “Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials,” Phys. Rev. E 72, 016626 (2005). [CrossRef]
  21. N. L. Tsitsas, N. Rompotis, I. Kourakis, P. G. Kevrekidis, and D. J. Frantzeskakis, “Higher-order effects and ultrashort solitons in left-handed metamaterials,” Phys. Rev. E 79, 037601 (2009). [CrossRef]
  22. S. Wen, Y. Xiang, X. Dai, Z. Tang, W. Su, and D. Fan, “Theoretical models for ultrashort electromagnetic beam propagation in nonlinear metamaterials,” Phys. Rev. A 75, 033815 (2007). [CrossRef]
  23. S. Wen, Y. Wang, W. Su, Y. Xiang, X. Fu, and D. Fan, “Modulation instability in nonlinear negative-index material,” Phys. Rev. E 73, 036617 (2006). [CrossRef]
  24. S. Wen, Y. Xiang, W. Su, Y. Hu, X. Fu, and D. Fan, “Role of the anomalous self steepening in modulation instability in negative-index material,” Opt. Express 14, 1568–1575 (2006). [CrossRef]
  25. Y. Xiang, S. Wen, X. Dai, Z. Tang, W. Su, and D. Fan, “Modulation instability induced by nonlinear dispersion in nonlinear metamaterials,” J. Opt. Soc. Am. B 24, 3058–3063 (2007). [CrossRef]
  26. J. Zhang, S. Wen, Y. Xiang, Y. Wang, and H. Luo, “Spatiotemporal electromagnetic soliton and spatial formation in nonlinear metamaterials,” Phys. Rev. A 81, 023829 (2010). [CrossRef]
  27. A. D. Boardman, N. King, R. C. Mitchell-Thomas, V. Malnev, and V. G. Rapoport, “Gain control and diffraction-managed solitons in metamaterials,” Metamaterials 2, 145–154 (2008). [CrossRef]
  28. A. D. Boardman, O. Hess, R. C. Mitchell-Thomas, Y. G. Rapoport, and L. Velasco, “Temporal solitons in magnetooptic and metamaterial waveguides,” Photon. Nanostr. Fundam. Appl. 8, 228–243 (2010). [CrossRef]
  29. A. K. Sarma and M. Saha, “Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium,” J. Opt. Soc. Am. B 28, 944–948 (2011). [CrossRef]
  30. A. Joseph and K. Porsezian, “Stability criterion for Gaussian pulse propagation through negative index materials,” Phys. Rev. A 81, 023805 (2010). [CrossRef]
  31. A. Kumar and A. K. Mishra, “Anomalous self-steepening, temporal pulse splitting and ring formation in a left-handed metamaterial with cubic nonlinearity,” J. Opt. Soc. Am. B 29, 1330–1337 (2012). [CrossRef]
  32. Y. Xiang, J. Wu, X. Dai, S. Wen, J. Guo, and Q. Wang, “Manipulating dispersive wave generation by anomalous self-steepening effect in metamaterials,” Opt. Express 20, 26828–26836 (2012). [CrossRef]
  33. Y. Xiang, X. Dai, S. Wen, J. Guo, and D. Fang, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84, 033815 (2011). [CrossRef]
  34. P. Li, R. Yang, and Z. Xu, “Gray solitary-wave solutions in nonlinear negative-index materials,” Phys. Rev. A 82, 046603 (2010).
  35. Y. Hu, S. Wen, H. Zhuo, K. You, and D. Fan, “Focusing properties of Gaussian beams by a slab of Kerr-type left-handed metamaterial,” Opt. Express 16, 4774–4784 (2008). [CrossRef]
  36. Y. Hu, S. Wen, Y. Wang, and D. Fan, “Propagation of Gaussian beams in negative-index metamaterials with cubic nonlinearity,” Opt. Commun. 281, 2663–2669 (2008). [CrossRef]
  37. Y. Hu and H. Zhuo, “Investigation of quasi-steady-state self-focusing in nonlinear left-handed metamaterials,” J. Opt. Soc. Am. B 26, B68–B73 (2009). [CrossRef]
  38. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996). [CrossRef]
  39. Y. Silberberg, “Collapse of optical beams,” Opt. Lett. 15, 1282–1284 (1990). [CrossRef]
  40. J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett. 17, 583–585 (1992). [CrossRef]
  41. J. E. Rothenberg, “Space–time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses,” Opt. Lett. 17, 1340–1342 (1992). [CrossRef]
  42. J. K. Ranka and A. L. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses,” Opt. Lett. 23, 534–536 (1998). [CrossRef]
  43. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000). [CrossRef]
  44. A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999). [CrossRef]
  45. M. Trippenbach and Y. B. Band, “Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 57, 4791–4803 (1998). [CrossRef]
  46. M. Trippenbach and Y. B. Band, “Dynamics of short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 56, 4242–4253 (1997). [CrossRef]
  47. A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998). [CrossRef]
  48. S. Champeaux and L. Bergé, “Femtosecond pulse compression in pressure-gas cells filled with argon,” Phys. Rev. E 68, 066603 (2003). [CrossRef]
  49. H. Ward and L. Bergé, “Temporal shaping of femtosecond solitary pulses in photoionized media,” Phys. Rev. Lett. 90, 053901 (2003). [CrossRef]
  50. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007). [CrossRef]
  51. A. Couairon and A. Mysrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  52. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). [CrossRef]
  53. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006). [CrossRef]
  54. G. D’Aguanno, N. Akozbek, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, “Dispersion-free pulse propagation in a negative-index material,” Opt. Lett. 30, 1998–2000 (2005). [CrossRef]
  55. J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006). [CrossRef]
  56. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited