OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 87–95

Lens-free phase shifting imaging for cold atoms

Chih-Yuan Huang, Hung-Shiue Chen, Chih-Yuan Liu, Chin-Han Chen, and D. J. Han  »View Author Affiliations


JOSA B, Vol. 31, Issue 1, pp. 87-95 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000087


View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a lens-free nondestructive imaging method for cold atomic clouds using a Gaussian beam accompanied with phase shifting interferometry. This scheme requires no imaging lens. Hence, aberrations associated with it are completely eliminated and mechanical focusing can be avoided. Compared with the common single-beam nondestructive means, our proposed scheme lowers the energy per probe pulse delivered to the cold samples by almost three orders of magnitude, due to signal enhancement inherently provided in the two-beam configuration. Moreover, higher image resolution is attainable by magnifying the far-field interference distribution using a divergent Gaussian beam. We examine this novel lensless detection means for in situ imaging on typical cold atomic clouds under experimentally achievable conditions. Our simulations show the cloud position can be precisely determined, depending upon the cloud size and probe parameters, with an uncertainty from a few hundreds of micrometers to only a few micrometers, and the spatial resolution of the retrieved phase image can reach the diffraction limit.

© 2013 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(100.5070) Image processing : Phase retrieval
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(170.1650) Medical optics and biotechnology : Coherence imaging
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(100.3175) Image processing : Interferometric imaging

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: June 20, 2013
Revised Manuscript: September 11, 2013
Manuscript Accepted: September 30, 2013
Published: December 11, 2013

Citation
Chih-Yuan Huang, Hung-Shiue Chen, Chih-Yuan Liu, Chin-Han Chen, and D. J. Han, "Lens-free phase shifting imaging for cold atoms," J. Opt. Soc. Am. B 31, 87-95 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-1-87


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996). [CrossRef]
  2. C. C. Bradley, C. A. Sackett, R. G. Hulet, “Bose–Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 78, 985–989 (1997). [CrossRef]
  3. S. Kadlecek, J. Sebby, R. Newell, T. G. Walker, “Nondestructive spatial heterodyne imaging of cold atoms,” Opt. Lett. 26, 137–139 (2001). [CrossRef]
  4. T.-P. Ku, C.-Y. Huang, B.-W. Shiau, D.-J. Han, “Phase shifting interferometry of cold atoms,” Opt. Express 19, 3730–3741 (2011). [CrossRef]
  5. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  6. C. G. J. Ollinger, “A waveguide-based lens-less x-ray microscope,” Ph.D. dissertation (University of Gottingen, Germany, 2006).
  7. L. D. Turner, “Holographic imaging of cold atoms,” Ph.D. dissertation (University of Melbourne, Australia, 2004).
  8. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  9. U. Schnars, W. Jueptner, Digital Holography (Springer-Verlag, 2005).
  10. L. D. Turner, K. F. E. M. Domen, R. E. Scholten, “Diffraction-contrast imaging of cold atoms,” Phys. Rev. A 72, 031403(R) (2005). [CrossRef]
  11. E. B. Champagne, N. G. Massey, “Resolution in holography,” Appl. Opt. 8, 1879–1885 (1969). [CrossRef]
  12. S. Lagomarsino, A. Cedola, P. Cloetens, S. Di Fonzo, W. Jark, G. Soullie, C. Riekel, “Phase contrast hard x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 71, 2557–2560 (1997). [CrossRef]
  13. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988).
  14. A plane wave is a special case of a Gaussian beam when the beam size is large.
  15. P. P. Banerjee, T.-C. Poo, eds. Principles of Applied Optics, (Irwin, 1991).
  16. C. Fuhse, C. Ollinger, T. Salditt, “Waveguide-based off-axis holography with hard x rays,” Phys. Rev. Lett. 97, 254801 (2006). [CrossRef]
  17. H.-S. Chen, “Lensless phase-shifting imaging of cold atoms,” Masters thesis (National Chung Cheng University, Taiwan, 2012).
  18. The DC phase π comes from the arctangent term in Eq. (5).
  19. F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).
  20. S. F. Ray, “The geometry of image formation,” in The Manual of Photography, 8th ed. (Focal, 1988).
  21. K. Nelson, X. Li, D. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556–560 (2007). [CrossRef]
  22. Y.-J. Lin, I. Teper, C. Chin, V. Vuletic, “Impact of the Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004). [CrossRef]
  23. P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, J. Reichel, “Coherence in microchip traps,” Phys. Rev. Lett. 92, 203005 (2004). [CrossRef]
  24. C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, C. E. Wieman, “Production of two overlapping Bose–Einstein condensates by sympathetic cooling,” Phys. Rev. Lett. 78, 586–589 (1997). [CrossRef]
  25. A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, V. L. Velichansky, “Experimental demonstration of enhanced index of refraction via quantum coherence in Rb,” Phys. Rev. Lett. 76, 3935–3938 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited