OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 96–104

Frequency shift of a nanowaveguide resonator driven by the tunable optical gradient force

Zuo-Yang Zhong, Wen-Ming Zhang, Yi Zhou, Guang Meng, and Hongguang Li  »View Author Affiliations


JOSA B, Vol. 31, Issue 1, pp. 96-104 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000096


View Full Text Article

Enhanced HTML    Acrobat PDF (771 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nanowaveguide resonator driven by a tunable optical gradient force can easily enter into the nonlinear oscillation regime, where the resonance frequency will shift. In this work, a continuum elastic model of the optoresonator is presented and solved analytically using the method of multiple scales. The effects of the optical gradient force on the resonance frequency and dynamic behavior are investigated. The results theoretically figure out why and when the nonlinear behavior of spring softening and spring hardening can occur. It is shown that the nonlinear phenomenon of spring softening is generally more dominant than the hardening effect when the optical gradient force is strong. However, the nonlinear cubic mechanical stiffness of the waveguide makes the dynamic behavior of spring softening dominant when the optical force is not strong enough. Based on the logical derivation of the closed-form solution, it can be found that the decrease of resonance frequency is due to the bias term, which is inherent in the nature of the tunable optical gradient force. Additionally, the complex variations of the resonance frequency and maximum vibration amplitude with different waveguide widths, lengths, and initial gaps are investigated and discussed. The proposed solutions are also verified with the reported experimental results.

© 2013 Optical Society of America

OCIS Codes
(200.4880) Optics in computing : Optomechanics
(230.7370) Optical devices : Waveguides
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: July 25, 2013
Revised Manuscript: November 6, 2013
Manuscript Accepted: November 8, 2013
Published: December 12, 2013

Citation
Zuo-Yang Zhong, Wen-Ming Zhang, Yi Zhou, Guang Meng, and Hongguang Li, "Frequency shift of a nanowaveguide resonator driven by the tunable optical gradient force," J. Opt. Soc. Am. B 31, 96-104 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-1-96


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Haldar, S. B. Pal, B. Roy, S. D. Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012). [CrossRef]
  2. Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013). [CrossRef]
  3. M. Muradoglu, W. S.-Y. Chiu, and T. W. Ng, “Optical force lateral push–pulling using focus positioning,” J. Opt. Soc. Am. B 29, 874–880 (2012). [CrossRef]
  4. D. R. Burnham and D. McGloin, “Modeling of optical traps for aerosols,” J. Opt. Soc. Am. B 28, 2856–2864 (2011). [CrossRef]
  5. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010). [CrossRef]
  6. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, and F. Capasso, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005). [CrossRef]
  7. D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010). [CrossRef]
  8. Y. Sun, T. P. White, and A. A. Sukhorukov, “Coupled-mode theory analysis of optical forces between longitudinally shifted periodic waveguides,” J. Opt. Soc. Am. B 30, 736–742 (2013). [CrossRef]
  9. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009). [CrossRef]
  10. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009). [CrossRef]
  11. J. Roels, I. de Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4, 510–513 (2009). [CrossRef]
  12. Y. He, S. He, J. Gao, and X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B 29, 2559–2566 (2012). [CrossRef]
  13. Y. He, L. Sun, S. He, and X. Yang, “Deep subwavelength beam propagation in extremely loss-anisotropic metamaterials,” J. Opt. 15, 055105 (2013). [CrossRef]
  14. M. Li, W. H. P. Pernice, and H. X. Tang, “Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities,” Appl. Phys. Lett. 97, 183110 (2010). [CrossRef]
  15. X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012). [CrossRef]
  16. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17, 21897–21909 (2009). [CrossRef]
  17. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef]
  18. Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009). [CrossRef]
  19. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef]
  20. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010). [CrossRef]
  21. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009). [CrossRef]
  22. J. Roels, B. Maes, W. Bogaerts, R. Baets, and D. V. Thourhout, “Parametric instability of an integrated micromechanical oscillator by means of active optomechanical feedback,” Opt. Express 19, 13081–13088 (2011). [CrossRef]
  23. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693–699 (2007). [CrossRef]
  24. Y. R. He, S. L. He, J. Gao, and X. D. Yang, “Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Express 20, 22372–22382 (2012). [CrossRef]
  25. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37, 2907–2909 (2012). [CrossRef]
  26. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959).
  27. N. Kacem, S. Hentz, D. Pinto, B. Reig, and V. Nguyen, “Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors,” Nanotechnology 20, 275501 (2009). [CrossRef]
  28. Z. Y. Zhong, W. M. Zhang, G. Meng, and J. Wu, “Inclination effects on the frequency tuning of comb-driven resonators,” J. Microelectromech. Syst. 22, 865–875 (2013). [CrossRef]
  29. X. Wei, C. Anthony, D. Lowe, and M. Ward, “Design and fabrication of a nonlinear micro impact oscillator,” Proc. Chem. 1, 855–858 (2009). [CrossRef]
  30. A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. A. Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst. 20, 943–958 (2011). [CrossRef]
  31. J. M. A. Eichler, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011). [CrossRef]
  32. S. Zaitsev, O. Shtempluck, E. Buks, and O. Gottlieb, “Nonlinear damping in a micromechanical oscillator,” Nonlinear Dyn. 67, 859–883 (2012). [CrossRef]
  33. E. Gil-Santos, D. Ramos, V. Pini, J. Llorens, M. Fernández-Regúlez, M. Calleja, J. Tamayo, and A. San Paulo, “Optical back-action in silicon nanowire resonators: bolometric versus radiation pressure effects,” New J. Phys. 15, 035001 (2013). [CrossRef]
  34. M. Bao and H. Yang, “Squeeze film air damping in MEMS,” Sens. Actuators A 136, 3–27 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited