Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extracting dynamical Green’s function of ultracold quantum gases via electromagnetically induced transparency

Not Accessible

Your library or personal account may give you access

Abstract

The essential quantum many-body physics of an ultracold quantum gas relies on the single-particle Green’s functions. We demonstrate that it can be extracted by the spectrum of electromagnetically induced transparency (EIT). The single-particle Green’s function can be reconstructed by the measurements of frequency moments in EIT spectroscopy. This optical measurement provides an efficient and nondestructive method to reveal the many-body properties, and we propose an experimental setup to realize it. Finite temperature and finite size effects are discussed, and we demonstrate the reconstruction steps of Green’s function for the examples of three-dimensional Mott-insulator phase and one-dimensional Luttinger liquid.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetically induced transparency and slow light in quantum degenerate atomic gases

H. H. Jen, Bo Xiong, Ite A. Yu, and Daw-Wei Wang
J. Opt. Soc. Am. B 30(11) 2855-2863 (2013)

Quantum random walks in a coherent atomic system via electromagnetically induced transparency

Yun Li, Chao Hang, Lei Ma, Weiping Zhang, and Guoxiang Huang
J. Opt. Soc. Am. B 25(12) C39-C45 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved