OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 178–188

Suppression of stimulated Brillouin scattering in integrated chalcogenide waveguides

Sebastian Jakobs, Alexander Petrov, and Manfred Eich  »View Author Affiliations

JOSA B, Vol. 31, Issue 2, pp. 178-188 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (977 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chalcogenide nanostructures are an interesting platform for ultra-fast nonlinear signal processing. However, stimulated Brillouin scattering (SBS) can represent a major obstacle to achieving this goal for continuous wave pumps, as it depletes the high-power pump wave. In this paper, we assess the SBS gain in an As 2 Se 3 nanowire, which is found to be much larger than the SBS gain in As 2 Se 3 fibers. Such a large SBS gain poses a severe problem, and standard concepts for fibers, such as Bragg gratings and tapers are found not to work for nanowires. However, through the introduction of an amorphous polycarbonate cladding, the elastic modes and the optical mode can be separated, and SBS can thus be efficiently suppressed by three and a half-orders of magnitude. At the same time, flexibility for other design goals, such as phase matching, is maintained.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(200.4880) Optics in computing : Optomechanics
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: August 2, 2013
Revised Manuscript: November 13, 2013
Manuscript Accepted: November 23, 2013
Published: January 3, 2014

Sebastian Jakobs, Alexander Petrov, and Manfred Eich, "Suppression of stimulated Brillouin scattering in integrated chalcogenide waveguides," J. Opt. Soc. Am. B 31, 178-188 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  2. T. Cheng, M. Liao, W. Gao, Z. Duan, T. Suzuki, Y. Ohishi, “Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber,” Opt. Express 20, 28846–28854 (2012). [CrossRef]
  3. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002). [CrossRef]
  4. W. Qiu, P. T. Rakich, M. Soljacic, Z. Wang, “Stimulated Brillouin scattering in slow light waveguides,” http://arxiv.org/abs/1210.0738v1 (2012).
  5. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 11008–11023 (2012).
  6. A. W. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).
  7. D. Royer, E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications (Springer, 2000).
  8. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1990).
  9. E. H. Bogardus, “Third-order elastic constants of Ge, MgO, and fused SiO2,” J. Appl. Phys. 36, 2504–2513 (1965). [CrossRef]
  10. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967). [CrossRef]
  11. Y. Ohmachi, N. Uchida, “Vitreous As2Se3: investigation of acousto-optical properties and application to infrared modulator,” J. Appl. Phys. 43, 1709–1712 (1972). [CrossRef]
  12. L. N. Durvasula, R. W. Gammon, “Brillouin scattering from shear waves in amorphous polycarbonate,” J. Appl. Phys. 50, 4339–4344 (1979). [CrossRef]
  13. Z. Cimpl, F. Kosek, “Refractive index of As2–xSbxS3 and As2–xSbxSe3 systems,” Phys. Status Solidi A 93, K55–K58 (1986). [CrossRef]
  14. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005). [CrossRef]
  15. COMSOL AB, “COMSOL Multiphysics,” (COMSOL AB, 2012).
  16. M. Krause, H. Renner, S. Fathpour, B. Jalali, E. Brinkmeyer, “Gain enhancement in cladding-pumped silicon Raman amplifiers,” IEEE J. Quantum Electron. 44, 692–704 (2008). [CrossRef]
  17. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [CrossRef]
  18. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136  W−1  m−1 at 1550  nm,” Opt. Express 18, 18866–18874 (2010). [CrossRef]
  19. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef]
  20. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  21. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  22. R. W. Boyd, K. Rza¸zewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990). [CrossRef]
  23. H. R. Philipp, D. G. Legrand, H. S. Cole, Y. S. Liu, “The optical properties of bisphenol-A polycarbonate,” Polym. Eng. Sci. 27, 1148–1155 (1987). [CrossRef]
  24. L. D. Landau, E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited