OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 207–217

Design of structurally colored surfaces based on scalar diffraction theory

Villads Egede Johansen, Jacob Andkjær, and Ole Sigmund  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 207-217 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000207


View Full Text Article

Enhanced HTML    Acrobat PDF (1251 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues are identified: some colors are harder to optimize for than others, and some can be produced by only a few height levels, whereas others require more complex structures. It is shown that a wide range of results can be obtained.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.1950) Optical devices : Diffraction gratings
(240.6700) Optics at surfaces : Surfaces
(330.1690) Vision, color, and visual optics : Color
(050.6624) Diffraction and gratings : Subwavelength structures
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 12, 2013
Manuscript Accepted: October 29, 2013
Published: January 6, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics
January 8, 2014 Spotlight on Optics

Citation
Villads Egede Johansen, Jacob Andkjær, and Ole Sigmund, "Design of structurally colored surfaces based on scalar diffraction theory," J. Opt. Soc. Am. B 31, 207-217 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-207


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003). [CrossRef]
  2. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005). [CrossRef]
  3. A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Tech. Adv. Mater. 12, 064709 (2011). [CrossRef]
  4. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  5. R. Hooke, Micrographia, 1665, http://www.gutenberg.org .
  6. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).
  7. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48, 4177–4190 (2009). [CrossRef]
  8. A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11, 2785–2792 (2011). [CrossRef]
  9. A. Saito, Y. Miyamura, Y. Ishikawa, J. Murase, M. Akai-Kasaya, and Y. Kuwahara, “Reproduction, mass-production and control of the Morpho-butterfly’s blue,” Proc. SPIE 7205, 720506 (2009). [CrossRef]
  10. Front Page—Nanoplast, http://www.nanoplast.dk/ , 2013.
  11. O. Karthaus, Biomimetics in Photonics (CRC Press, 2012).
  12. K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of natures design for manipulation of light,” Prog. Mater. Sci. 58, 825–873 (2013). [CrossRef]
  13. M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21, 12495–12506 (2013). [CrossRef]
  14. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19, A841–A850 (2011). [CrossRef]
  15. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012). [CrossRef]
  16. Y. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
  17. G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28, 9003–9009 (2012). [CrossRef]
  18. T. Xu, H. Shi, Y. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7, 3128–3136 (2011). [CrossRef]
  19. Z. Shi and Y. Gao, “Design of Dammann gratings by particle swarm optimization,” in Symposium on Photonics and Optoelectronics, June 2010.
  20. X. Li, Q. Tan, and G. Jin, “Surface profile optimization of antireflection gratings for solar cells,” Optik 122, 2078–2082 (2011). [CrossRef]
  21. K. S. Friis and O. Sigmund, “Robust topology design of periodic grating surfaces,” J. Opt. Soc. Am. B 29, 2935–2943 (2012). [CrossRef]
  22. J. Andkjær, V. E. Johansen, and O. Sigmund, “Inverse design of nano-structured surfaces for color effects,” J. Opt. Soc. Am. B 31, 164–174 (2014).
  23. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011). [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., McGraw-Hill Physical and Quantum Electronics Series (McGraw-Hill, 1996).
  25. J. E. Harvey, “Radiometry rocks,” Proc. SPIE 8483, 848304 (2012). [CrossRef]
  26. D. C. O’Shea, “Scalar diffraction theory,” in Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003), pp. 17–35.
  27. P. Dutré, K. Bala, and P. Bekaert, Advanced Global Illumination (A K Peters/CRC Press, 2006).
  28. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, “Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory,” Appl. Opt. 38, 6469–6481 (1999). [CrossRef]
  29. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, “Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory: errata,” Appl. Opt. 39, 6374–6375 (2000). [CrossRef]
  30. A. W. Lohmann, “About the philosophies of diffraction,” in International Trends in Optics, J. W. Goodman, ed. (Academic, 1991), Chap. 11, pp. 155–164.
  31. R. S. Berns, F. W. Billmeyer, and M. Saltzman, Billmeyer and Saltzman’s Principles of Color Technology (Wiley-Interscience, 2000).
  32. CIE: International Commission on Illumination, http://www.cie.co.at/ .
  33. International Electrotechnical Commission, “Colour management—default RGB colour space—sRGB,” , 1999.
  34. K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Internat. J. Numer. Methods Engrg. 24, 359–373 (1987). [CrossRef]
  35. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007). [CrossRef]
  36. T. Borrvall, “Topology optimization of elastic continua using restriction,” Arch. Comput. Methods Eng. 8, 351–385 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited