OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 229–236

Multi-qubit quantum phase gates based on surface plasmons of a nanosphere

Jun Ren, Jun Yuan, and Xiangdong Zhang  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 229-236 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000229


View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Dicke subradiance and superradiance resulting from the interaction between surface plasmons of a nanosphere and an ensemble of quantum emitters have been investigated using a Green’s function approach. Based on such an investigation, we propose a scheme for a deterministic multi-qubit quantum phase gate. As an example, two-qubit, three-qubit, and four-qubit quantum phase gates have been designed and analyzed in detail. Phenomena due to the losses in the metal are discussed. Potential applications of these phenomena to quantum-information processing are anticipated.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: July 16, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 27, 2013
Published: January 7, 2014

Citation
Jun Ren, Jun Yuan, and Xiangdong Zhang, "Multi-qubit quantum phase gates based on surface plasmons of a nanosphere," J. Opt. Soc. Am. B 31, 229-236 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  3. G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information Volume I: Basic Concepts (World Scientific, 2004).
  4. T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087–4090 (1995). [CrossRef]
  5. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a fundamental quantum logic gate,” Phys. Rev. Lett. 75, 4714–4717 (1995). [CrossRef]
  6. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995). [CrossRef]
  7. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166–5169 (1999). [CrossRef]
  8. N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997). [CrossRef]
  9. J. A. Jones, M. Mosca, and R. H. Hansen, “Implementation of a quantum search algorithm on a quantum computer,” Nature 393, 344–346 (1998). [CrossRef]
  10. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. D. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]
  11. T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941–944 (2003). [CrossRef]
  12. J. K. Pachos and P. L. Knight, “Quantum computation with a one-dimensional optical lattice,” Phys. Rev. Lett. 91, 107902 (2003). [CrossRef]
  13. A. Joshi and M. Xiao, “Three-qubit quantum-gate operation in a cavity QED system,” Phys. Rev. A 74, 052318 (2006). [CrossRef]
  14. H. Goto and K. Ichimura, “Multi-qubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004). [CrossRef]
  15. C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005). [CrossRef]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. S. I. Bozhevolnyi, ed. Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
  18. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “A model of an apertureless scanning microscope with a prolate nanospheroid as a tip and an excited molecule as an object,” Chem. Phys. Lett. 358, 192–198 (2002). [CrossRef]
  19. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005). [CrossRef]
  20. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  21. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  22. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]
  23. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  24. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]
  25. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef]
  26. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “Single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007). [CrossRef]
  27. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef]
  28. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009). [CrossRef]
  29. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011). [CrossRef]
  30. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stohr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5, 470–474 (2009). [CrossRef]
  31. D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: a Green’s function approach,” Phys. Rev. B 82, 075427 (2010). [CrossRef]
  32. Y. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect,” Phys. Rev. Lett. 102, 077401 (2009). [CrossRef]
  33. H. T. Dung, S. Scheel, D.-G. Welsch, and L. Knöll, “Atomic entanglement near a realistic microsphere,” J. Opt. B 4, S169–S175 (2002).
  34. D. Han, Y. Lai, J. Zi, Z. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009). [CrossRef]
  35. H. T. Dung, L. Knöll, and D.-G. Welsch, “Decay of an excited atom near an absorbing sphere,” Phys. Rev. A 64, 013804 (2001). [CrossRef]
  36. R. Ruppin, “Extinction due to surface modes near a spherical inclusion in a dispersive medium,” Phys. Status Solidi B 233, 331–338 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited