OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 237–247

Polarized spontaneous emission from an emitter in controlled nodal vacuum fluctuations near a single high reflector

Hideo Iwase  »View Author Affiliations

JOSA B, Vol. 31, Issue 2, pp. 237-247 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization-dependent spontaneous emission (SE) from multiple quantum wells (MQWs) sandwiched between a high-reflectivity distributed Bragg reflector (DBR) and a low-reflectivity surface of about 30% reflectance was investigated. In photoluminescence spectra, a split of the p- and s-polarized emission peaks was observed at the DBR band edges, while emission was completely suppressed in its bandgap. Theoretical analysis of the SE rate, based on quantum electrodynamics, explains well the experimental observations; that is, SE enhancement ratios of polarized light can be varied drastically by shifting the position of the low-reflectivity surface that modifies the nodal vacuum fluctuations in front of the high reflector.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Integrated Optics

Original Manuscript: August 29, 2013
Revised Manuscript: November 30, 2013
Manuscript Accepted: December 4, 2013
Published: January 10, 2014

Hideo Iwase, "Polarized spontaneous emission from an emitter in controlled nodal vacuum fluctuations near a single high reflector," J. Opt. Soc. Am. B 31, 237-247 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  3. A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009). [CrossRef]
  4. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  5. M. Makarova, V. Sih, J. Warga, R. Li, L. D. Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008). [CrossRef]
  6. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75, 1908–1910 (1999). [CrossRef]
  7. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Topics Quantum Electron. 9, 1340–1346 (2003). [CrossRef]
  8. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef]
  10. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003). [CrossRef]
  11. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998). [CrossRef]
  12. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction–Part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998). [CrossRef]
  13. E. A. Hinds, “Perturbative cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. R. Berman, eds., (Academic, 1994).
  14. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991). [CrossRef]
  15. H. P. Urbach and G. L. J. A. Rikken, “Spontaneous emission from a dielectric slab,” Phys. Rev. A 57, 3913–3930 (1998). [CrossRef]
  16. H. Khosravi and R. Loudon, “Vacuum field fluctuations and spontaneous emission in a dielectric slab,” Proc. R. Soc. A 436, 373–389 (1992).
  17. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984). [CrossRef]
  18. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970). [CrossRef]
  19. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978). [CrossRef]
  20. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998). [CrossRef]
  21. H. Iwase, D. Englund, and J. Vučković, “Spontaneous emission control in high-extraction efficiency plasmonic crystals,” Opt. Express 16, 426–434 (2008). [CrossRef]
  22. H. Iwase, D. Englund, and J. Vučković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18, 16546–16560 (2010). [CrossRef]
  23. H. Taniguchi and H. Ito, “Observation of reflection-induced light correlation in spontaneous emission in front of a mirror,” Opt. Lett. 19, 1565–1567 (1994). [CrossRef]
  24. M. Liscidini, M. Galli, M. Shi, G. Dacarro, M. Patrini, D. Bajoni, and J. E. Sipe, “Strong modification of light emission from a dye monolayer via Bloch surface waves,” Opt. Lett. 34, 2318–2320 (2009). [CrossRef]
  25. H. Khosravi and R. Loudon, “Vacuum field fluctuations and spontaneous emission in the vicinity of a dielectric surface,” Proc. R. Soc. A 433, 337–352 (1991). [CrossRef]
  26. E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61, 2546–2549 (1988). [CrossRef]
  27. K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Enhanced spontaneous emission observed at one-dimensional photonic band edges,” J. Opt. Soc. Am. B 27, 45–50 (2010). [CrossRef]
  28. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262–2267 (1995).
  29. A. Delfan, M. Liscidini, and J. E. Sipe, “Surface enhanced Raman scattering in the presence of multilayer dielectric structures,” J. Opt. Soc. Am. B 29, 1863–1874 (2012). [CrossRef]
  30. A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6, 3–9 (2005). [CrossRef]
  31. A. Dodabalapur, L. J. Rothberg, and T. M. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65, 2308–2310 (1994). [CrossRef]
  32. C. Begon, H. Rigneault, P. Jonsson, and J. G. Rarity, “Spontaneous emission control with planar dielectric structures: an asset for ultrasensitive fluorescence analysis,” Single Mol. 1, 207–214 (2000). [CrossRef]
  33. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1–24 (2001). [CrossRef]
  34. Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000). [CrossRef]
  35. Y. Xu, J. S. Vučković, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999). [CrossRef]
  36. J. J. Burke, “Simple formulation of radiation modes in planar multilayer waveguides,” J. Opt. Soc. Am. A 11, 2481–2484 (1994). [CrossRef]
  37. H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996). [CrossRef]
  38. H. Iwase, Y. Gong, D. Englund, and J. Vučković, “Spontaneous emission control in a plasmonic structure,” in Nanoscale Photonics and Optoelectronics: Lecture Notes in Nanoscale Science and Technology, Z. M. Wang and A. Neogi, eds., (Springer-Verlag, 2010).
  39. J. Dong, J. Teng, S. Chua, B. Foo, Y. Wang, L. Zhang, H. Yuan, and S. Yuan, “Continuous-wave operation of AlGaInP/GaInP quantum-well lasers grown by metalorganic chemical vapor deposition using tertiary butylphosphine,” J. Appl. Phys. 95, 5252–5254 (2004). [CrossRef]
  40. T. M. Ritter, B. A. Weinstein, R. E. Viturro, and D. P. Bour, “Energy level alignments in strained-layer GaInP/AlGaInP laser diodes: model solid theory analysis of pressure-photoluminescence experiments,” Phys. Status Solidi B 211, 869–883 (1999). [CrossRef]
  41. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  42. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1964).
  43. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  44. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564–11567 (1999).
  45. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited