OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 277–281

Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber

Bin Fang, Offir Cohen, and Virginia O. Lorenz  »View Author Affiliations

JOSA B, Vol. 31, Issue 2, pp. 277-281 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (555 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a fiber-based source of polarization-entangled photon pairs at visible wavelengths suitable for integration with local quantum-processing schemes. The photons are created through birefringent phase-matching in spontaneous four-wave mixing inside a Sagnac interferometer. We address entanglement due to temporal distinguishability of the photons to enable the generation of a spectrally unfiltered polarization-entangled photon-pair state with 95.86±0.10% fidelity to a maximally entangled Bell state, evaluated with a tomographic state reconstruction without applying any corrections or background subtractions. Owing to the large birefringence of the fiber, photons are created far detuned from the pump, where Raman contamination is negligible. This source’s spatial mode and ability to produce spectrally uncorrelated photons make it suitable for implementing quantum information protocols over free-space and fiber-based networks.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: October 15, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 12, 2013
Published: January 17, 2014

Bin Fang, Offir Cohen, and Virginia O. Lorenz, "Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber," J. Opt. Soc. Am. B 31, 277-281 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  3. W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).
  4. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  5. J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A 74, 013802 (2006). [CrossRef]
  6. O. Kuzucu and F. N. C. Wong, “Pulsed sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008). [CrossRef]
  7. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express 15, 6926–6933 (2007). [CrossRef]
  8. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100  km of fiber,” Opt. Express 15, 7853–7862 (2007). [CrossRef]
  9. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293–295 (2005). [CrossRef]
  10. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008). [CrossRef]
  11. T. Zhong, X. Hu, F. N. C. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3  μm telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010). [CrossRef]
  12. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010). [CrossRef]
  13. F. Kaiser, A. Issautier, L. A. A. Ngah, O. Dănilă, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012). [CrossRef]
  14. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007). [CrossRef]
  15. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007). [CrossRef]
  16. A. Ling, J. Chen, J. Fan, and A. Migdall, “Mode expansion and Bragg filtering for a high-fidelity fiber-based photon-pair source,” Opt. Express 17, 21302–21312 (2009). [CrossRef]
  17. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004). [CrossRef]
  18. X. Li, P. Voss, J. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550  nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef]
  19. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010). [CrossRef]
  20. Q. Zhou, W. Zhang, P. Wang, Y. Huang, and J. Peng, “Polarization entanglement generation at 1.5  μm based on walk-off effect due to fiber birefringence,” Opt. Lett 37, 1679–1681 (2012). [CrossRef]
  21. Q. Zhou, W. Zhang, T. Niu, S. Dong, Y. Huang, and J. Peng, “A polarization maintaining scheme for 1.5 μm polarization entangled photon pair generation in optical fibers,” arXiv:1307.7207 [quant-ph] (2013).
  22. M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express 17, 14558–14566 (2009). [CrossRef]
  23. M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011). [CrossRef]
  24. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009). [CrossRef]
  25. R. H. Stolen, M. A. Bosch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6, 213–215 (1981). [CrossRef]
  26. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21, 2707–2717 (2013). [CrossRef]
  27. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011). [CrossRef]
  28. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Krll, J. H. Mller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Skld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010). [CrossRef]
  29. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]
  30. E. Meyer-Scott, V. Roy, J.-P. P. Bourgoin, B. L. Higgins, L. K. Shalm, and T. Jennewein, “Generating polarization-entangled photon pairs using cross-spliced birefringent fibers,” Opt. Express 21, 6205–6212 (2013). [CrossRef]
  31. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004). [CrossRef]
  32. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef]
  33. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000). [CrossRef]
  34. S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101 (2000). [CrossRef]
  35. Y.-H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62, 011802 (2000). [CrossRef]
  36. “Fabricated based on a design by the group of A. Steinberg, University of Toronto,” http://www.physics.utoronto.ca/~astummer/pub/mirror/Projects/Archives/2008\%20Coincidence\%20Counter/Coincidence\%20Counter.html .
  37. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited